top of page

Search results

609 results found with an empty search

  • AlgoSec | Understanding network lifecycle management

    Behind every important business process is a solid network infrastructure that lets us access all of these services. But for an efficient... Application Connectivity Management Understanding network lifecycle management Tsippi Dach 2 min read Tsippi Dach Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 7/4/23 Published Behind every important business process is a solid network infrastructure that lets us access all of these services. But for an efficient and available network, you need an optimization framework to maintain a strong network lifecycle. It can be carried out as a lifecycle process to ensure continuous monitoring, management, automation, and improvement. Keep in mind, there are many solutions to help you with connectivity management . Regardless of the tools and techniques you follow, there needs to be a proper lifecycle plan for you to be able to manage your network efficiently. Network lifecycle management directs you on reconfiguring and adapting your data center per your growing requirements. The basic phases of a network lifecycle In the simplest terms, the basic phases of a network lifecycle are Plan, Build, and Manage. These phases can also be called Design, Implement, and Operate (DIO). Now, in every single instance where you want to change your network, you repeat this process of designing, implementing, and managing the changes. And every subtask that is carried out as part of the network management can also follow the same lifecycle phases for a more streamlined process . Besides the simpler plan, build, and manage phases, certain network frameworks also provide additional phases depending on the services and strategies involved. ITIL framework ITIL stands for Information Technology Infrastructure Library, which is an IT management framework. ITIL put forth a similar lifecycle process focusing on the network services aspect. The phases, as per ITIL, are: Service strategy Service design Service transition Service operations Continual service improvement PPDIOO framework PPDIOO is a network lifecycle model proposed by Cisco, a learning network services provider. This framework adds to the regular DIO framework with several subtasks, as explained below. Plan Prepare The overall organizational requirements, network strategy, high-level conceptual architecture, technology identification, and financial planning are all carried out in this phase. Plan Planning involves identifying goal-based network requirements, user needs, assessment of any existing network, gap analysis, and more. The tasks are to analyze if the existing infrastructure or operating environment can support the proposed network solution. The project plan is then drafted to align with the project goals regarding cost, resources, and scope. Design Network design experts develop a detailed, comprehensive network design specification depending on the findings and project specs derived from previous phases. Build The build phase is further divided into individual implementation tasks as part of the network implementation activities. This can include procurement, integrating devices, and more. The actual network solution is built as per the design, focusing on ensuring service availability and security. Operate The operational phase involves network maintenance, where the design’s appropriateness is tested. The network is monitored and managed to maintain high availability and performance while optimizing operational costs. Optimize The operational phase gives important data that can be utilized to optimize the performance of the network implementation further. This phase acts as a proactive mechanism to identify and solve any flaws or vulnerabilities within the network. It may involve network redesign and thus start a new cycle as well. Why develop a lifecycle optimization plan? A lifecycle approach to network management has various use cases. It provides an organized process, making it more cost-effective and less disruptive to existing services. Reduced total network ownership cost Early on, planning and identifying the exact network requirements and new technologies allow you to carry out a successful implementation that aligns with your budget constraints. Since there is no guesswork with a proper plan, you can avoid redesigns and rework, thus reducing any cost overheads. High network availability Downtimes are a curse to business goals. Each second that goes by without access to the network can be bleeding money. Following a proper network lifecycle management model allows you to plan your implementation with less to no disruptions in availability. It also helps you update your processes and devices before they get into an outage issue. Proactive monitoring and management, as proposed by lifecycle management, goes a long way in avoiding unexpected downtimes. This also saves time with telecom troubleshooting. Better business agility Businesses that adapt better thrive better. Network lifecycle management allows you to take the necessary action most cost-effectively in case of any quick economic changes. It helps you prepare your systems and operations to accommodate the new network changes before they are implemented. It also provides a better continuous improvement framework to keep your systems up to date and adds to cybersecurity. Improved speed of access Access to the network, the faster it is, the better your productivity can be. Proper lifecycle management can improve service delivery efficiency and resolve issues without affecting business continuity. The key steps to network lifecycle management Let us guide you through the various phases of network lifecycle management in a step-by-step approach. Prepare Step 1: Identify your business requirements Establish your goals, gather all your business requirements, and arrive at the immediate requirements to be carried out. Step 2: Create a high-level architecture design Create the first draft of your network design. This can be a conceptual model of how the solution will work and need not be as detailed as the final design would be. Step 3: Establish the budget Do the financial planning for the project detailing the possible challenges, budget, and expected profits/outcomes from the project. Plan Step 4: Evaluate your current system This step is necessary to properly formulate an implementation plan that will be the least disruptive to your existing services. Gather all relevant details, such as the hardware and software apps you use in your network. Measure the performance and other attributes and assess them against your goal specifics. Step 5: Conduct Gap Analysis Measure the current system’s performance levels and compare them with the expected outcomes that you want to achieve. Step 6: Create your implementation plan With the collected information, you should be able to draft the implementation plan for your network solution. This plan should essentially contain the various tasks that must be carried out, along with information on milestones, responsibilities, resources, and financing options. Design Step 7: Create a detailed network design Expand on your initial high-level concept design to create a comprehensive and detailed network design. It should have all the relevant information required to implement your network solution. Take care to include all necessary considerations regarding your network’s availability, scalability, performance, security, and reliability. Ensure the final design is validated by a proper approval process before being okayed for implementation. Implementation Step 8: Create an implementation plan The Implementation phase must have a detailed plan listing all the tasks involved, the steps to rollback, time estimations, implementation guidelines, and all the other details on how to implement the network design. Step 9: Testing Before implementing the design in the production environment, starting with a lab setting is a good idea. Implement in a lab testing environment to check for any errors and how feasible it is to implement the design. Improve the design depending on the results of this step. Step 10: Pilot implementation Implement in an iterative process starting with smaller deployments. Start with pilot implementations, test the results, and if all goes well, you can move towards wide-scale implementation. Step 11: Full deployment When your pilot implementation has been successful, you can move toward a full-scale deployment of network operations. Operate Step 12: Measure and monitor When you move to the Operational phase, the major tasks will be monitoring and management. This is probably the longest phase, where you take care of the day-to-day operational activities such as: Health maintenance Fault detection Proactive monitoring Capacity planning Minor updates (MACs – Moves, Adds, and Changes) Optimize Step 13: Optimize the network design based on the collected metrics. This phase essentially kicks off another network cycle with its own planning, designing, workflows, and implementation. Integrate network lifecycle with your business processes First, you must understand the importance of network lifecycle management and how it impacts your business processes and IT assets. Understand how your business uses its network infrastructure and how a new feature could add value. For instance, if your employees work remotely, you may have to update your infrastructure and services to allow real-time remote access and support personal network devices. Any update or change to your network should follow proper network lifecycle management to ensure efficient network access and availability. Hence, it must be incorporated into the company’s IT infrastructure management process. As a standard, many companies follow a three-year network life cycle model where one-third of the network infrastructure is upgraded to keep up with the growing network demands and telecommunications technology updates. Automate network lifecycle management with AlgoSec AlgoSec’s unique approach can automate the entire security policy management lifecycle to ensure continuous, secure connectivity for your business applications. The approach starts with auto discovering application connectivity requirements, and then intelligently – and automatically – guides you through the process of planning changes and assessing the risks, implementing those changes and maintaining the policy, and finally decommissioning firewall rules when the application is no longer in use. Schedule a demo Related Articles 2025 in review: What innovations and milestones defined AlgoSec’s transformative year in 2025? AlgoSec Reviews Mar 19, 2023 · 2 min read Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • AlgoSec Launches AlgoSec Horizon, its Most Advanced Application-Centric Security Platform for Converging Cloud and On-Premise Environments

    AlgoSec Horizon platform empowers organizations to seamlessly secure applications across complex, converging cloud and on-premise network environments with AI-driven visibility, automation and risk mitigation AlgoSec Launches AlgoSec Horizon, its Most Advanced Application-Centric Security Platform for Converging Cloud and On-Premise Environments AlgoSec Horizon platform empowers organizations to seamlessly secure applications across complex, converging cloud and on-premise network environments with AI-driven visibility, automation and risk mitigation February 11, 2025 Speak to one of our experts RIDGEFIELD PARK, NJ, February 11, 2025 – AlgoSec , a global cybersecurity leader, today announced the launch of AlgoSec Horizon , the industry's first and only application-centric security management and automation platform designed for hybrid networks. By applying an application-centric approach to security, the AlgoSec Horizon platform enables security teams to manage application connectivity and security policies consistently across both cloud and data center environments. Gartner predicts that by 2027 , 50% of critical enterprise applications will reside outside of centralized public cloud locations, underscoring the ongoing expansion, evolution and complexity of today’s network infrastructures. Yet, many businesses still have a segmented team that splits focus between development and security teams in an effort to ensure holistic protection. To combat these challenges, businesses are embracing unified platforms that converge cloud and data center security teams to align strategies, unify policy enforcement and ensure consistent security within hybrid environments. “Today's networks are 100x more complex as a result of the rapid acceleration of application deployment and network complexity, requiring organizations to embrace platformization to unify security operations, automate policies and enhance visibility across infrastructures,” said Eran Shiff , VP Product of AlgoSec. “With the launch of the AlgoSec Horizon Platform, organizations now have full visibility into their hybrid-cloud network, allowing for increased security without business productivity interference.” As the first and only application-centric security management and automation platform for the hybrid network, AlgoSec Horizon utilizes advanced AI capabilities to automatically discover and identify an organization’s business applications across multi-clouds and data centers, and remediate risks more effectively. The platform serves as a single source for visibility into security and compliance issues across hybrid network environments to ensure adherence to security standards and regulations. Through AlgoSec Horizon, organizations are able to: ● Visualize application connectivity: Utilize advanced AI modules to discover and identify running business applications within an organization’s network, including their connectivity, network zones, risks, vulnerabilities and resources, to reduce operational complexity and simplify management. ● Securely automate application connectivity changes: Ensure smooth business operations by intelligently automating security policy changes with a focus on business applications. AlgoSec’s intelligent automation minimizes misconfigurations and enhances operational resilience to accelerate application delivery from weeks to hours. ● Prioritize risk mitigation based on business context: Prioritize remediation efforts based on the criticality of affected applications and associated risks, to ensure resources are effectively allocated to protect vital business processes. AlgoSec helps prioritize security efforts based on the criticality of business applications, industry best practices, relevant regulations and specific security policies, to ensure the most severe vulnerabilities are addressed first. ● Maintain application-centric compliance: Streamline regulatory adherence, make audits faster and easier to manage, and ensure that organizations remain compliant with minimal effort and reduce the risk of non-compliance penalties across the entire hybrid environment. During Cisco Live 2025 Amsterdam , AlgoSec will invite attendees to experience and demo the Horizon Platform at stand C05. To request a media briefing with AlgoSec at the show, please email [email protected] . About AlgoSec AlgoSec, a global cybersecurity leader, empowers organizations to securely accelerate application delivery up to 10 times faster by automating application connectivity and security policy across the hybrid network environment. With two decades of expertise securing hybrid networks, over 2,200 of the world's most complex organizations trust AlgoSec to help secure their most critical workloads. AlgoSec Horizon platform utilizes advanced AI capabilities, enabling users to automatically discover and identify their business applications across multi-clouds and datacenters, and remediate risks more effectively. It serves as a single source for visibility into security and compliance issues across the hybrid network environment, to ensure ongoing adherence to internet security standards, industry, and internal regulations. Additionally, organizations can leverage intelligent change automation to streamline security change processes, thus improving security and agility. Learn how AlgoSec enables application owners, information security experts, SecOps and cloud security teams to deploy business applications faster while maintaining security at www.algosec.com . MEDIA CONTACT: Michelle Rand Alloy, on behalf of AlgoSec [email protected] 855-300-8209

  • AlgoSec | Continuous compliance monitoring best practices 

    As organizations respond to an ever-evolving set of security threats, network teams are scrambling to find new ways to keep up with... Auditing and Compliance Continuous compliance monitoring best practices Tsippi Dach 2 min read Tsippi Dach Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 3/19/23 Published As organizations respond to an ever-evolving set of security threats, network teams are scrambling to find new ways to keep up with numerous standards and regulations to dodge their next compliance audit violation. Can this nightmare be avoided? Yes, and it’s not as complex as one might think if you take a “compliance first” approach . It may not come as a surprise to many, but the number of cyber attacks is increasing every year and with it the risk to companies’ financial, organizational, and reputational standing. What’s at stake? The stakes are high when it comes to cyber security compliance. A single data breach can result in massive financial losses, damage to a company’s reputation, and even jail time for executives. Data breaches: Data breaches are expensive and becoming even more so by the day. According to the Ponemon Institute’s 2022 Cost of a Data Breach Report , the average cost of a data breach is $4.35 million. Fraud: Identity fraud is one of the most pressing cybersecurity threats today. In large organizations, the scale of fraud is also usually large, resulting in huge losses causing depletion of profitability. In a recent survey done by PwC, nearly one in five organizations said that their most disruptive incident cost over $50 million*. Theft: Identity theft is on the rise and can be the first step towards compromising a business. According a study from Javelin Strategy & Research found that identity fraud costs US businesses an estimated total of $56 billion* in 2021. What’s the potential impact? The potential impact of non-compliance can be devastating to an organization. Financial penalties, loss of customers, and damage to reputation are just a few of the possible consequences. To avoid these risks, organizations must make compliance a priority and take steps to ensure that they are meeting all relevant requirements. Legal impact:  Regulatory or legal action brought against the organization or its employees that could result in fines, penalties, imprisonment, product seizures, or debarment.  Financial impact:  Negative impacts with regard to the organization’s bottom line, share price, potential future earnings, or loss of investor confidence.  Business impact:  Adverse events, such as embargos or plant shutdowns, could significantly disrupt the organization’s ability to operate.  Reputational impact:  Damage to the organization’s reputation or brand—for example, bad press or social-media discussion, loss of customer trust, or decreased employee morale.  How can this be avoided? In order to stay ahead of the ever-expanding regulatory requirements, organizations must adopt a “compliance first” approach to cyber security. This means enforcing strict compliance criteria and taking immediate action to address any violations to ensure data is protected. Some of these measures include the following: Risk assessment: Conduct ongoing monitoring of compliance posture (risk assessment) and conduct regular internal audits (ensuring adherence with regulatory and legislative requirements (HIPAA, GDPR, PCI DSS, SOX, etc.) Documentation: Enforce continuous tracking of changes and intent Annual audits: Commission 3rd party annual audits to ensure adherence with regulatory and legislative requirements (HIPAA, GDPR, PCI DSS, SOX, etc.) Conclusion and next steps Compliance violations are no laughing matter. They can result in fines, business loss, and even jail time in extreme cases. They can be difficult to avoid unless you take the right steps to avoid them. You have a complex set of rules and regulations to follow as well as numerous procedures, processes, and policies. And if you don’t stay on top of things, you can end up with a compliance violation mess that is difficult to untangle. Fortunately, there are ways to reduce the risk of being blindsided by a compliance violation mess with your organization. Now that you know the risks and what needs to be done, here are six best practices for achieving it. External links: $50 million $56 billion Schedule a demo Related Articles 2025 in review: What innovations and milestones defined AlgoSec’s transformative year in 2025? AlgoSec Reviews Mar 19, 2023 · 2 min read Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • Merging the Cloud with Application Connectivity | AlgoSec

    Learn the basics of managing multiple workloads in the cloud and how to create a successful enterprise level security management program Webinars Merging the Cloud with Application Connectivity Discover the hottest trends and best practices for application-based security management As more companies make the leap into distributed architecture, the smallest gaps in network security can quickly become targets for attack. While an application-based security strategy can help you protect your hybrid cloud estate better, this shift in focus comes with its own challenges. In this webinar, we discuss: How securing application connectivity plays a key role in hybrid cloud risk management Why application orchestration is critical to managing your network within the hybrid cloud environment How to achieve effective cloud security solutions and best practices To learn more, go to https://www.algosec.com/resources/hub/hybrid_cloud/ September 27, 2022 Hillary Baron Cloud Security Alliance Oren Amiram Director Product Management, Algosec Relevant resources Firewall Rule Recertification with Application Connectivity Keep Reading What is cloud network security? Keep Reading Cloud migration: How to move applications to the cloud Keep Reading Choose a better way to manage your network Choose a better way to manage your network Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Continue

  • AlgoSec | 12 Best Network Security Audit Tools + Key Features

    Fortified network security requires getting a variety of systems and platforms to work together. Security teams need to scan for... Firewall Policy Management 12 Best Network Security Audit Tools + Key Features Asher Benbenisty 2 min read Asher Benbenisty Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 10/25/23 Published Fortified network security requires getting a variety of systems and platforms to work together. Security teams need to scan for potential threats, look for new vulnerabilities in the network, and install software patches in order to keep these different parts working smoothly. While small organizations with dedicated cybersecurity teams may process these tasks manually at first, growing audit demands will quickly outpace their capabilities. Growing organizations and enterprises rely on automation to improve IT security auditing and make sure their tech stack is optimized to keep hackers out. Network Security Audit Tools Explained Network Security Audit Tools provide at-a-glance visibility into network security operations and infrastructure. They scan network security tools throughout the environment and alert administrators of situations that require their attention. These situations can be anything from emerging threats, newly discovered vulnerabilities, or newly released patches for important applications. Your network security audit tools provide a centralized solution for managing the effectiveness of your entire security tech stack – including cloud-based software solutions and on-premises tools alike. With such a wide set of responsibilities, it should come as no surprise that many audit tools differ widely from one another. Some are designed for easy patch management while others may focus on intrusion detection or sensitive data exfiltration. Major platforms and operating systems may even include their own built-in audit tools. Microsoft Windows has an audit tool that focuses exclusively on Active Directory. However, enterprise security teams don’t want to clutter their processes with overlapping tools and interfaces – they want to consolidate their auditing tools onto platforms that allow for easy management and oversight. Types of Network Security Audit Tools Firewall Auditing Tools Firewall security rules provide clear instructions to firewalls on what kind of traffic is permitted to pass through. Firewalls can only inspect connections they are configured to detect . These rules are not static , however. Since the cybersecurity threat landscape is constantly changing, firewall administrators must regularly update their policies to accommodate new types of threats. At the same time, threat actors who infiltrate firewall management solutions can gain a critical advantage over their targets. They can change the organization’s security policies to ignore whatever malicious traffic they are planning on using to compromise the network. If these changes go unnoticed, even the best security technologies won’t be able to detect or respond to the threat. Security teams must regularly evaluate their firewall security policies to make sure they are optimized for the organization’s current risk profile. This means assessing the organization’s firewall rules and determining whether it is meeting its security needs. The auditing process may reveal overlapping rules, unexpected configuration changes , or other issues. Vulnerability Scanners Vulnerability scanners are automated tools that create an inventory of all IT assets in the organization and scan those assets for weak points that attackers may exploit. They also gather operational details of those assets and use that information to create a comprehensive map of the network and its security risk profile. Even a small organization may have thousands of assets. Hardware desktop workstations, laptop computers, servers, physical firewalls, and printers all require vulnerability scanning. Software assets like applications , containers, virtual machines, and host-based firewalls must also be scanned. Large enterprises need scanning solutions capable of handling enormous workloads rapidly. These tools provide security teams with three key pieces of information: Weaknesses that hackers know how to exploit . Vulnerability scanners work based on known threats that attackers have exploited in the past. They show security teams exactly where hackers could strike, and how. The degree of risk associated with each weakness . Since scanners have comprehensive information about every asset in the network, they can also predict the damage that might stem from an attack. This allows security teams to focus on high-priority risks first. Recommendations on how to address each weakness . The best vulnerability scanners provide detailed reports with in-depth information on how to mitigate potential threats. This gives security personnel step-by-step information on how to improve the organization’s security posture. Penetration Testing Tools Penetration testing allows organizations to find out how resilient their assets and processes might be in the face of an active cyberattack. Penetration testers use the same tools and techniques hackers use to exploit their victims, showing organizations whether their security policies actually work. Traditionally, penetration testing is carried out by two teams of cybersecurity professionals. The “red team” attempts to infiltrate the network and access sensitive data while the “blue team” takes on defense. Cybersecurity professionals should know how to use the penetration testing tools employed by hackers and red team operatives. Most of these tools have legitimate uses and are a fixture of many IT professionals’ toolkits. Some examples include: Port scanners . These identify open ports on a particular system. This can help users identify the operating system and find out what applications are running on the network. Vulnerability scanners . These search for known vulnerabilities in applications, operating systems, and servers. Vulnerability reports help penetration testers identify the most reliable entry point into a protected network. Network analyzers . Also called network sniffers, these tools monitor the data traveling through the network. They can provide penetration testers with information about who is communicating over the network, and what protocols and ports they are using. These tools help security professionals run security audits by providing in-depth data on how specific attack attempts might play out. Additional tools like web proxies and password crackers can also play a role in penetration testing, providing insight into the organization’s resilience against known threats. Key Functionalities of Network Security Audit Software Comprehensive network security audit solutions should include the following features: Real-time Vulnerability Assessment Network Discovery and Assessment Network Scanning for Devices and IP Addresses Identifying Network Vulnerabilities Detecting Misconfigurations and Weaknesses Risk Management Customizable Firewall Audit Templates Endpoint Security Auditing Assessing Endpoint Security Posture User Account Permissions and Data Security Identifying Malware and Security Threats Compliance Auditing Generating Compliance Audit Reports Compliance Standards and Regulations PCI DSS HIPAA GDPR NIST Integration and Automation with IT Infrastructure Notifications and Remediation User Interface and Ease of Use Operating System and Configuration Auditing Auditing Windows and Linux Systems User Permissions and Access Control Top 12 Network Security Audit Tools 1. AlgoSec AlgoSec simplifies firewall audits and allows organizations to continuously monitor their security posture against known threats and risks. It automatically identifies compliance gaps and other issues that can get in the way of optimal security performance, providing security teams with a single, consolidated view into their network security risk profile. 2. Palo Alto Networks Palo Alto Networks offers two types of network security audit solutions to its customers: The Prevention Posture Assessment is a questionnaire that helps Palo Alto customers identify security risks and close security gaps. The process is guided by a Palo Alto Networks sales engineer, who reviews your answers and identifies the areas of greatest risk within your organization. The Best Practice Assessment Tool is an automated solution for evaluating next-generation firewall rules according to Palo Alto Networks established best practices. It inspects and validates firewall rules and tells users how to improve their policies. 3. Check Point Check Point Software provides customers with a tool that monitors security security infrastructure and automates configuration optimization. It allows administrators to monitor policy changes in real-time and translate complex regulatory requirements into actionable practices. This reduces the risk of human error while allowing large enterprises to demonstrate compliance easily. The company also provides a variety of audits and assessments to its customers. These range from free remote self-test services to expert-led security assessments. 4. ManageEngine ManageEngine provides users with a network configuration manager with built-in reporting capabilities and automation. It assesses the network for assets and delivers detailed reports on bandwidth consumption, users and access levels, security configurations, and more. ManageEngine is designed to reduce the need for manual documentation, allowing administrators to make changes to their networks without having to painstakingly consult technical manuals first. Administrators can improve the decision-making process by scheduling ManageEngine reports at regular intervals and acting on its suggestions. 5. Tufin Tufin provides organizations with continuous compliance and audit tools designed for hybrid networks. It supports a wide range of compliance regulations, and can be customized for organization-specific use cases. Security administrators use Tufin to gain end-to-end visibility into their IT infrastructure and automate policy management. Tufin offers multiple network security audit tool tiers, starting from a simple centralized policy management tool to an enterprise-wide zero-touch automation platform. 6. SolarWinds SolarWinds is a popular tool for tracking configuration changes and generating compliance reports. It allows IT administrators to centralize device tracking and usage reviews across the network. Administrators can monitor configurations, make changes, and load backups from the SolarWinds dashboard. As a network security audit tool, SolarWinds highlights inconsistent configuration changes and non-compliant devices it finds on the network. This allows security professionals to quickly identify problems that need immediate attention. 7. FireMon FireMon Security Manager is a consolidated rule management solution for firewalls and cloud security groups. It is designed to simplify the process of managing complex rules on growing enterprise networks. Cutting down on misconfigurations mitigates some of the risks associated with data breaches and compliance violations. FireMon provides users with solutions to reduce risk, manage change, and enforce compliance. It features a real-time inventory of network assets and the rules that apply to them. 8. Nessus Tenable is renowned for the capabilities of its Nessus vulnerability scanning tool. It provides in-depth insights into network weaknesses and offers remediation guidance. Nessus is widely used by organizations to identify and address vulnerabilities in their systems and networks. Nessus provides security teams with unlimited IT vulnerability assessments, as well as configuration and compliance audits. It generates custom reports and can scan cloud infrastructure for vulnerabilities in real-time. 9. Wireshark Wireshark is a powerful network protocol analyzer. It allows you to capture and inspect data packets, making it invaluable for diagnosing network issues. It does not offer advanced automation or other features, however. WireShark is designed to give security professionals insight into specific issues that may impact traffic flows on networks. Wireshark is an open-source tool that is highly regarded throughout the security industry. It is one of the first industry-specific tools most cybersecurity professionals start using when obtaining certification. 10. Nmap (Network Mapper) Nmap is another open-source tool used for network discovery and security auditing. It excels in mapping network topology and identifying open ports. Like WireShark, it’s a widespread tool often encountered in cybersecurity certification courses. Nmap is known for its flexibility and is a favorite among network administrators and security professionals. It does not offer advanced automation on its own, but it can be automated using additional modules. 11. OpenVAS (Open Vulnerability Assessment System) OpenVAS is an open-source vulnerability scanner known for its comprehensive security assessments. It is part of a wider framework called Greenbone Vulnerability Management, which includes a selection of auditing tools offered under GPL licensing. That means anyone can access, use, and customize the tool. OpenVAS is well-suited to organizations that want to customize their vulnerability scanning assessments. It is particularly well-suited to environments that require integration with other security tools. 12. SkyBox Security Skybox helps organizations strengthen their security policies and reduce their exposure to risk. It features cloud-enabled security posture management and support for a wide range of third-party integrations. Skybox allows security teams to accomplish complex and time-consuming cybersecurity initiatives faster and with greater success. It does this by supporting security policy lifecycle management, providing audit and compliance automation, and identifying vulnerabilities in real-time. Steps to Conduct a Network Security Audit Define the Scope : Start by defining the scope of your audit. You’ll need to determine which parts of your network and systems will be audited. Consider the goals and objectives of the audit, such as identifying vulnerabilities, ensuring compliance, or assessing overall security posture. Gather Information : Collect all relevant information about your network, including network diagrams, asset inventories, and existing security policies and procedures. This information will serve as a baseline for your audit. The more comprehensive this information is, the more accurate your audit results can be. Identify Assets : List all the assets on your network, including servers, routers, switches, firewalls, and endpoints. Ensure that you have a complete inventory of all devices and their configurations. If this information is not accurate, the audit may overlook important gaps in your security posture. Assess Vulnerabilities : Use network vulnerability scanning tools to identify vulnerabilities in your network. Vulnerability scanners like Nessus or OpenVAS can help pinpoint weaknesses in software, configurations, or missing patches. This process may take a long time if it’s not supported by automation. Penetration Testing : Conduct penetration testing to simulate cyberattacks and assess how well your network defenses hold up. Penetration testing tools like Metasploit or Burp Suite can help identify potential security gaps. Automation can help here, too – but the best penetration testing services emulate the way hackers work in the real world. Review Policies and Procedures : Evaluate the results of your vulnerability and penetration testing initiatives. Review your existing security policies and procedures to ensure they align with best practices and compliance requirements. Make necessary updates or improvements based on audit findings. Log Analysis : Analyze network logs to detect any suspicious or unauthorized activities. Log analysis tools like Splunk or ELK Stack can help by automating the process of converting log data into meaningful insights. Organizations equipped with SIEM platforms can analyze logs in near real-time and continuously monitor their networks for signs of unauthorized behavior. Review Access Controls : Ensure the organization’s access control policies are optimal. Review user permissions and authentication methods to prevent unauthorized access to critical resources. Look for policies and rules that drag down production by locking legitimate users out of files and folders they need to access. Firewall and Router Configuration Review: Examine firewall and router configurations to verify that they are correctly implemented and that access rules are up to date. Ensure that only necessary ports are open, and that the organization’s firewalls are configured to protect those ports. Prevent hackers from using port scanners or other tools to conduct reconnaissance. Patch Management : Check for missing patches and updates on all network devices and systems. Regularly update and patch software to address known vulnerabilities. Review recently patched systems to make sure they are still compatible with the tools and technologies they integrate with. Incident Response Plan : Review and update your incident response plan. Ensure the organization is prepared to respond effectively to security incidents, and can rely on up-to-date playbooks in the event of a breach. Compare incident response plans with the latest vulnerability scanning data and emerging threat intelligence information. Documentation and Reporting: Document all audit findings, vulnerabilities, and recommended remediation steps. Generate data visualizations that guide executives and other stakeholders through the security audit process and explain its results. Create a comprehensive report that includes an executive summary, technical details, and prioritized action items. Remediation : Implement the necessary changes and remediation measures to address the identified vulnerabilities and weaknesses. Deploy limited security resources effectively, prioritizing fixes based on their severity. Avoid unnecessary downtime when reconfiguring security tools and mitigating risk. Follow-Up Audits: Schedule regular follow-up audits to ensure that the identified vulnerabilities have been addressed and that security measures are continuously improved. Compare the performance metric data gathered through multiple audits and look for patterns emerging over time. Training and Awareness: Provide training and awareness programs for employees to enhance their understanding of security best practices and their role in maintaining network security. Keep employees well-informed about the latest threats and vulnerabilities they must look out for. FAQs What are some general best practices for network security auditing? Network security audits should take a close look at how the organization handles network configuration management over time. Instead of focusing only on how the organization’s current security controls are performing, analysts should look for patterns that predict how the organization will perform when new threats emerge in the near future. This might mean implementing real-time monitoring and measuring how long it takes for obsolete rules to get replaced. What is the ideal frequency for conducting network security audits? Network security audits should be conducted at least annually, with more frequent audits recommended for organizations with high-security requirements. Automated policy management platforms like AlgoSec can help organizations audit their security controls continuously. Are network security audit tools effective against zero-day vulnerabilities? Network security audit tools may not detect zero-day vulnerabilities immediately. However, they can still contribute by identifying other weaknesses that could be exploited in tandem with a zero-day vulnerability. They also provide information on how long it takes the organization to recognize new vulnerabilities once they are discovered. What should I look for when choosing a network security audit tool for my organization? Consider factors like the tool’s compatibility with your network infrastructure, reporting capabilities, support and updates, and its track record in identifying vulnerabilities relevant to your industry. Large enterprises highly value scalable tools that support automation. Can network security audit tools help with regulatory compliance? Yes, many audit tools offer compliance reporting features, helping organizations adhere to various industry and government regulations. Without an automated network security audit tool in place, many organizations would be unable to consistently demonstrate compliance. How long does it take to conduct a typical network security audit? The duration of an audit varies depending on the size and complexity of the network. A thorough audit can take anywhere from a few days to several weeks. Continuous auditing eliminates the need to disrupt daily operations when conducting audits, allowing security teams to constantly improve performance. What are the most common mistakes organizations make during network security audits? Common mistakes include neglecting to update audit tools regularly, failing to prioritize identified vulnerabilities, and not involving key stakeholders in the audit process. Overlooking critical assets like third-party user accounts can also lead to inaccurate audit results. What are some important capabilities needed for a Cloud-Based Security Audit? Cloud-based security audits can quickly generate valuable results by scanning the organization’s cloud-hosted IT assets for vulnerabilities and compliance violations. However, cloud-based audit software must be able to recognize and integrate third-party SaaS vendors and their infrastructure. Third-party tools and platforms can present serious security risks, and must be carefully inspected during the audit process. What is the role of Managed Service Providers (MSPs) in Network Security Auditing? MSPs can use audits to demonstrate the value of their services and show customers where improvement is needed. Since this improvement often involves the customer drawing additional resources from the MSP, comprehensive audits can improve the profitability of managed service contracts and deepen the connection between MSPs and their customers. Schedule a demo Related Articles 2025 in review: What innovations and milestones defined AlgoSec’s transformative year in 2025? AlgoSec Reviews Mar 19, 2023 · 2 min read Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • AlgoSec acquires Prevasio to disrupt the Agentless Cloud Security market

    Organizations of all sizes can now protect their cloud-native applications easily and cost-effectively across containers and all other cloud assets AlgoSec acquires Prevasio to disrupt the Agentless Cloud Security market Organizations of all sizes can now protect their cloud-native applications easily and cost-effectively across containers and all other cloud assets December 7, 2022 Speak to one of our experts Ridgefield Park, NJ, December 6, 2022 – AlgoSec, a global cybersecurity leader in securing application connectivity, announced today that it has acquired Prevasio, a SaaS cloud-native application protection platform (CNAPP) that includes an agentless cloud security posture management (CSPM) platform, anti-malware scan, vulnerability assessment and dynamic analysis for containers. As applications rapidly migrate to the Cloud, security teams are being flooded with alerts. These teams are struggling to detect and prioritize risks through Cloud providers’ native security controls, especially in multi-cloud environments. Furthermore, security teams are hard-pressed to find solutions that meet their budgetary restrictions. To answer this need, AlgoSec will offer the Prevasio solution at aggressive pricing to new customers, as well as the existing 1,800 blue chip enterprise organizations they currently serve, allowing them to reduce their cloud security costs. Prevasio’s user-friendly, cost-effective SaaS solution is designed for hardening security posture across all cloud assets, including containers. The solution provides increased visibility into security issues and compliance gaps, enabling the cloud operations and security teams to prioritize risks and comply with CIS benchmarks. Prevasio customers have successfully reduced administration time and achieved operational cost reductions, even across small teams, within days of operationalization. Leveraging patented technology developed by SRI International, one of the world’s largest research institutes and the developer of Siri and many other leading technologies, Prevasio’s key capabilities include: Analysis of all assets across AWS, Azure, and Google Cloud, offering a unified view in a single pane of glass Prioritized risk according to CIS benchmarks, HIPPA and PCI regulations Blazing fast static- and dynamic- agentless vulnerability scanning of containers Assessment and detection of cybersecurity threats Instantaneous connection to AWS, Azure, or Google Cloud accounts without installation or deployment Furthermore, AlgoSec will incorporate SRI artificial intelligence (AI) capabilities into the Prevasio solution. “Applications are the lifeblood of organizations. As such, our customers have an urgent need to effectively secure the connectivity of those applications across cloud and hybrid estates to avoid unpleasant surprises. With Prevasio, organizations can now confidently secure their cloud-native applications to increase organizational agility and harden security posture,” said Yuval Baron, AlgoSec CEO. For a free trial of the Prevasio solution, click here . About AlgoSec AlgoSec, a global cybersecurity leader, empowers organizations to secure application connectivity by automating connectivity flows and security policy, anywhere. The AlgoSec platform enables the world’s most complex organizations to gain visibility, reduce risk, achieve compliance at the application-level and process changes at zero-touch across the hybrid network. AlgoSec’s patented application-centric view of the hybrid network enables business owners, application owners, and information security professionals to talk the same language, so organizations can deliver business applications faster while achieving a heightened security posture. Over 1,800 of the world’s leading organizations trust AlgoSec to help secure their most critical workloads across public cloud, private cloud, containers, and on-premises networks. About Prevasio Prevasio, an AlgoSec company, helps organizations of all sizes protect their cloud-native applications across containers and all other cloud assets. Prevasio’s agentless cloud-native application protection platform (CNAPP) provides increased visibility into security and compliance gaps, enabling the cloud operations and security teams to prioritize risks and ensure compliance with internet security benchmarks. Acquired by AlgoSec in 2022, Prevasio combines cloud-native security with SRI International’s proprietary AI capabilities and AlgoSec’s expertise in securing 1,800 of the world’s most complex organizations.

  • Hybrid Cloud Security with Google and AlgoSec | AlgoSec

    Learn how Google Cloud and AlgoSec solutions help companies improve visibility and reduce risk in large complex hybrid networking environments Webinars Hybrid Cloud Security with Google and AlgoSec Learn how Google Cloud and AlgoSec solutions help companies improve visibility and reduce risk in large complex hybrid networking environments Learn how Google Cloud and AlgoSec solutions help companies improve visibility and reduce risk in large complex hybrid networking environments November 15, 2023 Faye Feng Product Manager at Google Ava Chawla Global Head of Cloud Security Relevant resources Why misconfigurations continue to plague public cloud network services and how to avoid them? Keep Reading Security policy management for the hybrid cloud environment Read an Ebook Choose a better way to manage your network Choose a better way to manage your network Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Continue

  • AlgoSec | Host-based firewalls vs. network-based firewalls for network security?

    Before your organization can move business applications to the cloud, it must deploy network security solutions that can reliably block... Network Segmentation Host-based firewalls vs. network-based firewalls for network security? Prof. Avishai Wool 2 min read Prof. Avishai Wool Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 8/28/23 Published Before your organization can move business applications to the cloud, it must deploy network security solutions that can reliably block cybercrime and malware. Firewalls are essential cybersecurity tools that protect network traffic against threat actors. There are many different types of firewalls available, but put the same basic principles in action. Before finding out which types of firewalls offer the best security performance for your cloud implementation, it’s important to cover how firewalls work and what characteristics set them apart. How firewalls work: Different types of firewalls explained Firewalls are best explained through analogy. Think of firewalls as 24/7 security guards with deep knowledge of millions of criminals. Whenever the security guard sees a criminal approaching an access point, they block access and turn the criminal away. This kind of access control is accomplished in a few different ways. Some firewalls inspect packets for suspicious characteristics. Others use stateful inspection to identify malicious traffic. Some incorporate contextual awareness to tell the difference between harmless traffic and cyberattacks . Here are some of the major types of firewalls and how they work: Packet filtering firewalls inspect data traveling through inline junction points like routers and switches. They don’t route data packets themselves, but compare them to a list of firewall rules. For example, they may filter packets that are traveling to untrusted IP addresses and drop them. Circuit-level gateways monitor TCP handshake data and other protocol messages for signs of unauthorized access. These firewalls don’t inspect individual packets or application layer monitoring, though. Proxy firewalls apply application layer filtering that filters data according to a wide range of characteristics. This category includes web application firewalls, which are a type of reverse proxy firewall – they protect the server from malicious traffic by filtering clients before they reach the server. Stateful inspection firewalls examine and compare multiple packets to find out if they are part of an established network session. This offers a high degree of control over incoming and outgoing traffic while providing comprehensive logs on network connections. Next-generation firewalls combine packet inspection, stateful inspection, antivirus, and additional technologies to protect organizations against unknown threats and vulnerabilities. These firewalls are expensive and have high bandwidth requirements, but they also offer a high level of protection. All of these firewalls exist in different forms. Traditional hardware firewalls are physical devices that sit between network devices and the internet. Network-based firewalls are software-defined apps designed to do the same thing. Hardware, software, or cloud? firewall deployment methods compared Organizations have multiple options when deciding to host firewalls on their private networks. The market offers a vast number of security devices and firewall providers, ranging from Cisco hardware to software solutions like Microsoft’s Windows firewall. Large enterprises use a combination of firewall solutions to adopt a multi-layered security posture. This allows them to achieve network scalability and segmentation while offering different levels of protection to data centers, individual devices, and user endpoints. As firewall technology becomes more accessible, smaller organizations are following suit. Here are some of the delivery formats that firewall solutions commonly come in: Network-based Firewalls are self-contained hardware appliances. They typically run custom operating systems using Linux distributions designed for secure computer networking. They can be challenging to configure and deploy, but are appropriate for a wide range of use cases. Host-based Firewalls run as software on a server or other device. You can run host-based firewalls on individual computers, or at the host level of a cloud environment. The firewalls offer granular control over security rules and individual hosts, but consume resources in the process. Cloud Hosted Firewalls are provided by third-party security partners as a service. These firewalls may be entirely managed by a third-party partner, making them ideal for small organizations that can’t afford building their own security infrastructure from the ground up. How to select an optimal firewall solution for your organization Every organization has a unique security risk profile. Finding the right firewall deployment for your organization requires in-depth knowledge of your network’s security vulnerabilities and potential for long-term growth. Some of the issues you have to consider include: Identifying technical objectives for individual firewalls. There are no one-size-fits-all firewall solutions. One solution may match a particular use case that another does not. Both stateless packet inspection firewalls and sophisticated next-generation solutions operate at different levels of the OSI model, which means each device should serve a well-defined purpose. Selecting firewall solutions that match your team’s expertise. Consider your IT team’s technical qualifications. If configuring a sophisticated next-generation firewall requires adding talent with specialized certifications to your team, the cost of that deployment will rise considerably. Deploying firewalls in ways that improve security performance while reducing waste. Optimal firewall architecture requires effective network segmentation and good security policies. Deploying a secure local area network (LAN) and using virtual private networks (VPNs) can help optimize firewall placement throughout the organization. Determining which kinds of traffic inspection are necessary. Different types of network connections require different levels of security. For example, a public-facing Wi-Fi router is far more likely to encounter malicious traffic than an internal virtual local area network (VLAN) that only authenticated employees can access. How to choose between host-based firewalls and network-based firewalls when moving to the cloud Organizations that are transitioning to cloud infrastructure need to completely rethink their firewall deployment strategy. Firewalls are the cornerstone of access control, and cloud-hosted infrastructure comes with the shared responsibility model that puts pressure on security leaders to carefully deploy security resources. In many cases, you’ll face tough decisions concerning which type of firewall to deploy at particular points in your network. Building an optimal deployment means working through the pros and cons of each option on a case-by-case basis. Host-based firewalls and network-based firewalls are the two main options you’ll encounter for most use cases. Let’s look at what each of those options look like from a complete network security perspective . 1. Host-based firewalls offer flexibility but may introduce vulnerabilities A cloud-native organization that exclusively uses host-based firewalls will have a cloud environment filled with virtual machines that take the place of servers and individual computers. To protect those devices, the organization will implement host-based firewalls on every virtual machine and configure them accordingly. This provides the organization with a great deal of flexibility. IT team members can clone virtual machines and move them within the cloud on demand. The host-based firewalls that protect these machines can move right alongside them, ensuring consistent security policies are enforced without painstaking manual configuration. It’s even possible to move virtual machines between cloud environments – like moving a virtual server from Amazon AWS to Microsoft Azure – without having to create completely new security policies in the process. This makes it easy for IT teams to work securely without introducing friction. However, if attackers gain privileged access to host-based firewalls, they gain the same level of control. They may switch off the firewall or install malicious code in ways that other security technologies cannot detect. Even highly secure organizations are subject to this kind of risk. Imagine an attacker compromises the credentials of a system administrator with firewall configuration privileges. Very few obstacles stand between an insider threat and the sensitive data they wish to exfiltrate. Network-based firewalls offer independent security Compared to host-based firewall products, it’s much harder for a malicious insider to compromise a network-based firewall solution managed by a cloud provider. That’s because the physical hardware is operating on a completely separate system from the host. In a cloud-native environment, the network-based firewall would be a fully hardened device managed by a third-party provider running their own intrusion detection systems. This makes it much harder for attackers to successfully infiltrate and compromise systems without being noticed. At the same time, independent network-based firewall architecture means that the attacker would have to compromise both your network and the cloud provider’s network without triggering security alerts from either. This adds a great deal of complexity to any attack, and significantly increases the chance it will be detected. However, few organizations can afford to exclusively deploy hardware firewalls at every layer of their network. Even those that can afford it will run into significant challenges when planning for growth and scalability. Segment your network for optimal protection While they offer increased security, hardware firewalls are costly to deploy and maintain. Most organizations segment their networks in ways that offer extensive multi-layered protection to their most sensitive data while allowing more flexible host-based firewalls to protect less critical assets. Every organization has a unique balance between optimal network-based firewall and host-based firewall deployment. This depends heavily on the volume of sensitive data the organization regularly accesses, and the security of its connections with users and third-party service providers. Proper network segmentation helps reduce the organization’s attack surface and decrease the risk of business disruption. Schedule a demo Related Articles 2025 in review: What innovations and milestones defined AlgoSec’s transformative year in 2025? AlgoSec Reviews Mar 19, 2023 · 2 min read Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • Measures that actually DO reduce your hacking risk | AlgoSec

    Robert Bigman is uniquely equipped to share actionable tips for hardening your network security against vulnerabilities Don’t miss this opportunity to learn the latest threats and how to handle them Webinars Measures that actually DO reduce your hacking risk Learn from the best how to defeat hackers and ransomware As incidents of ransomware attacks become more common, the time has come to learn from the best how to defeat hackers. Join us as Robert Bigman, the former CISO of the CIA, presents his webinar Measures that Actually do Reduce your Hacking Risk. Robert Bigman is uniquely equipped to share actionable tips for hardening your network security against vulnerabilities. Don’t miss this opportunity to learn the latest threats and how to handle them. April 20, 2022 Robert Bigman Consultant; Former CISO of the CIA Relevant resources Ensuring critical applications stay available and secure while shifting to remote work Keep Reading Reducing risk of ransomware attacks - back to basics Keep Reading Ransomware Attack: Best practices to help organizations proactively prevent, contain and Keep Reading Choose a better way to manage your network Choose a better way to manage your network Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Continue

  • AlgoSec | 5 Best Network Vulnerability Scanning Tools in 2024

    Network vulnerability scanning provides in-depth insight into your organization’s security posture and highlights the specific types of... Network Security 5 Best Network Vulnerability Scanning Tools in 2024 Tsippi Dach 2 min read Tsippi Dach Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 2/11/24 Published Network vulnerability scanning provides in-depth insight into your organization’s security posture and highlights the specific types of vulnerabilities attackers may exploit when targeting it. These tools work by systematically scanning your network environment — including all desktops, laptops, mobile endpoints, servers, and other assets for known weaknesses and misconfigurations. Your analyzer then produces a detailed report that tells you exactly how hackers might breach your systems. Find out how these important tools contribute to successfully managing your security policies and protecting sensitive assets from cybercriminals and malware. What is Network Vulnerability Management? Network vulnerability scanners are cybersecurity solutions typically delivered under a software-as-a-service (SaaS) model. These solutions match your network asset configurations with a comprehensive list of known misconfigurations and security threats, including unpatched software, open ports, and other security issues. By comparing system details against a comprehensive database of known vulnerabilities, network scanning helps pinpoint areas of weakness that could potentially be exploited by threat actors. This proactive approach is essential for maintaining robust network security and protecting sensitive data from unauthorized access and cyberattacks. This provides your organization with several valuable benefits: Early detection of known security vulnerabilities. If your organization is exposed to security threats that leverage known vulnerabilities, you’ll want to address these security gaps as soon as possible. Comprehensive data for efficient risk management. Knowing exactly how many security vulnerabilities your organization is exposed to gives you clear data for conducting in-depth risk management . Regulatory compliance. Many regulatory compliance frameworks like SOC 2, ISO 27001, and PCI DSS require organizations to undergo regular vulnerability scanning. Reduced costs. Automating the process of scanning for vulnerabilities reduces the costs associated with discovering and remediating security weaknesses manually. Key Features and Functions The best network security vulnerability scanners have several important features in common: Prioritized vulnerability assessment tools. You need to be able to assess and prioritize vulnerabilities based on their severity. This allows you to commit security resources to addressing high-priority vulnerabilities first, and taking care of low-impact weaknesses afterwards. Automation and real-time analysis. Manual scanning is a difficult and time-consuming process. Your vulnerability scanner must support automated, ongoing scanning for real-time vulnerability detection, providing on-demand insights into your security risk profile. Integration with remediation tools: The best network vulnerability scanners integrate with other security tools for quick mitigation and remediation. This lets security teams quickly close security gaps and move on to the next, without having to spend time accessing and managing a separate set of security tools. How Network Vulnerability Scanning Tools Work Step 1. Scanning Process Initial network mapping is the first step in the vulnerability scanning process. At this point, your scanner maps your entire network and identifies every device and asset connected to it. This includes all web servers, workstations, firewalls , and network devices. The automatic discovery process should produce a comprehensive map showing how your network is connected, and show detailed information about each network device. It should include comprehensive port scanning to identify open ports that attackers could use to gain entry to the network. Step 2. Detection Techniques The next step in the process involves leveraging advanced detection techniques to identify known vulnerabilities in the network. Most network vulnerability scanners rely on two specific techniques to achieve this: Signature-Based Detection: The scanner checks for known vulnerabilities by comparing system details against a database of known issues. This database is drawn from extensive threat intelligence feeds and public records like the MITRE CVE Program . Heuristic Analysis: This technique relies on heuristic and behavioral techniques to identify unknown or zero-day vulnerabilities based on unusual system behavior or configurations. It may detect suspicious activities that don’t correspond to known threats, prompting further investigation. Step 3. Vulnerability Identification This step involves checking network assets for known vulnerabilities according to their unique risk profile. This includes scanning for outdated software and operating system versions, and looking for misconfigurations in network devices and settings. Most network scanners achieve this by pinging network-accessible systems, sending them TCP/UDP packets, and remotely logging into compatible systems to gather detailed information about them. Highly advanced network vulnerability scanning tools have more comprehensive sets of features for identifying these vulnerabilities, because they recognize a wider, more up-to-date range of network devices. Step 4. Assessment and Reporting This step describes the process of matching network data to known vulnerabilities and prioritizing them based on their severity. Advanced network scanning devices may use automation and sophisticated scripting to produce a list of vulnerabilities and exposed network components. First, each vulnerability is assessed for its potential impact and risk level, often based on industry-wide compliance standards like NIST. Then the tool prioritizes each vulnerability based on its severity, ease of exploitation, and potential impact on the network. Afterwards, the tool generates a detailed report outlining every vulnerability assessed and ranking it according to its severity. These reports guide the security teams in addressing the identified issues. Step 5. Continuous Monitoring and Updates Scanning for vulnerabilities once is helpful, but it won’t help you achieve the long-term goal of keeping your network protected against new and emerging threats. To do that, you need to continuously monitor your network for new weaknesses and establish workflows for resolving security issues proactively. Many advanced scanners provide real-time monitoring, constantly scanning the network for new vulnerabilities as they emerge. Regular updates to the scanner’s vulnerability database ensure it can recognize the latest known vulnerabilities and threats. If your vulnerability scanner doesn’t support these two important features, you may need to invest additional time and effort into time-consuming manual operations that achieve the same results. Step 6. Integration with Other Security Measures Security leaders must pay close attention to what happens after a vulnerability scan detects an outdated software patch or misconfiguration. Alerting security teams to the danger represented by these weaknesses is only the first step towards actually resolving them, and many scanning tools offer comprehensive integrations for launching remediation actions. Remediation integrations are valuable because they allow security teams to quickly address vulnerabilities immediately upon discovering them. The alternative is creating a list of weaknesses and having the team manually go through them, which takes time and distracts from higher-impact security tasks. Another useful integration involves large-scale security posture analytics. If your vulnerability assessment includes analysis and management tools for addressing observable patterns in your network vulnerability scans, it will be much easier to dedicate resources to the appropriate security-enhancing initiatives. Choosing a Network Vulnerability Scanning Solution There are two major categories of features that network vulnerability scanning tools must offer in order to provide best-in-class coverage against sophisticated threats. Keep these aspects in mind when reviewing your options for deploying vulnerability scans in your security workflow. Important Considerations Comprehensive Vulnerability Database. Access to an extensive CVE database is vital. Many of these are open-source and available to the general public, but the sheer number of CVE records can drag down performance. The best vulnerability management tools have highly optimized APIs capable of processing these records quickly. Customizability and Templates. Tailoring scans to specific needs and environments is important for every organization, but it takes on special significance for organizations seeking to demonstrate regulatory compliance. That’s because the outcome of compliance assessments and audits will depend on the quality of data included in your reports. False Positive Management. All vulnerability scanners are susceptible to displaying false positives, but some manage these events better than others. This is especially important in misconfiguration cases, because it can cause security teams to mistakenly misconfigure security tools that were configured correctly in the first place. Business Essentials Support for Various Platforms. Your vulnerability scan must ingest data from multiple operating systems like Windows, Linux, and a variety of cloud platforms. If any of these systems are not compatible with the scanning process, you may end up with unstable performance or unreliable data. Reporting and Analytics. Detailed reports and analytics help you establish a clear security posture assessment. Your vulnerability management tool must provide clear reports that are easy for non-technical stakeholders to understand. This will help you make the case for necessary security investments in the future. Scalability and Flexibility. These solutions must scale with the growth of your organization’s IT infrastructure . Pay attention to the usage and payment model each vulnerability scanning vendor uses. Some of them may be better suited to small, growing organizations while others are more appropriate for large enterprises and government agencies. Top 5 Network Vulnerability Scanning Providers 1. AlgoSec AlgoSec is a network security platform that helps organizations identify vulnerabilities and orchestrate network security policies in response. It includes comprehensive features for managing firewalls routers , and other security device configurations, and enables teams to proactively scan for new vulnerabilities on their network. AlgoSec reports on misconfigurations and vulnerabilities, and can show how simulated changes to IT infrastructure impact the organization’s security posture. It provides in-depth visibility and control over multi-cloud and on-premises environments. Key features: Comprehensive network mapping. AlgoSec supports automatic network asset discovery, giving security teams complete coverage of the hybrid network. In-depth automation. The platform supports automatic security policy updates in response to detected security vulnerabilities, allowing security teams to manage risk proactively. Detailed risk analysis. When AlgoSec detects a vulnerability, it provides complete details and background on the vulnerability itself and the risk it represents. 2. Tenable Nessus Tenable Nessus is one of the industry’s most reputable names in vulnerability assessment and management. It is widely used to identify and fix vulnerabilities including software flaws, missing security patches, and misconfigurations. It supports a wide range of operating systems and applications, making it a flexible tool for many different use cases. Key features: High-speed discovery. Tenable supports high speed network asset discovery scans through advanced features. Break up scans into easily managed subnetworks and configure ping settings to make the scan faster. Configuration auditing. Security teams can ensure IT assets are compliant with specific compliance-oriented audit policies designed to meet a wide range of assets and standards. Sensitive data discovery. Tenable Nessus can discover sensitive data located on the network and provide clear, actionable steps for protecting that data in compliance with regulatory standards. 3. Rapid7 Nexpose Nexpose offers real-time monitoring and risk assessment designed for enterprise organizations. As an on-premises vulnerability scanner, the solution is well-suited to the needs of large organizations with significant IT infrastructure deployments. It collects vulnerability information, prioritizes it effectively, and provides guidance on remediating risks. Key Features: Enterprise-ready on-premises form factor. Rapid7 designed Nexpose to meet the needs of large organizations with constant vulnerability scanning needs. Live monitoring of the attack surface. Organizations can continuously scan their IT environment and prioritize discovered vulnerabilities using more than 50 filters to create asset groups that correspond to known threats. Integration with penetration testing. Rapid7 comes with a wide range of fully supported integrations and provides vulnerability and exploitability context useful for pentest scenarios. 4. Qualys Qualys is an enterprise cloud security provider that includes vulnerability management in its IT security and compliance platform. It includes features that help security teams understand and manage security risks while automating remediation with intuitive no-code workflows. It integrates well with other enterprise security solutions, but may not be accessible for smaller organizations. Key features: All-in-one vulnerability management workflow . Qualys covers all of your vulnerability scanning and remediation needs in a single, centralized platform. It conducts asset discovery, detects vulnerabilities, prioritizes findings, and launches responses with deep customization and automation capabilities. Web application scanning . The platform is well-suited to organizations with extensive public-facing web applications outside the network perimeter. It supports container runtime security, including container-as-a-service environments. Complete compliance reporting . Security teams can renew expiring certificates directly through Qualys, making it a comprehensive solution to obtaining and maintaining compliance. 5. OpenVAS (Greenbone Networks) OpenVAS is an open-source tool that offers a comprehensive scanning to organizations of all sizes. It is available under a General Public License (GPL) agreement, making it a cost-effective option compared to competing proprietary software options. It supports a range of customizable plugins through its open source developer community. Key Features: Open-source vulnerability scanner. Organizations can use and customize OpenVAS at no charge, giving it a significant advantage for organizations that prioritize cost savings. Customizable plugins. As with many open-source tools, there is a thriving community of developers involved in creating customizable plugins for unique use cases. Supports a wide range of vulnerability tests . The high level of customization offered by OpenVAS allows security teams to run many different kinds of vulnerability tests from a single, centralized interface. Honorable Mentions Nmap (Network Mapper): A versatile and free open-source tool, NMAP is popular for network discovery and security auditing. It’s particularly noted for its flexibility in scanning both large networks and single hosts. Nmap is a powerful and popular Linux command-line tool commonly featured in cybersecurity education courses. Microsoft’s Azure Security Center: Ideal for organizations heavily invested in the Azure cloud platform, this tool provides integrated security monitoring and policy management across hybrid cloud workloads. It unifies many different security features, including vulnerability assessment, proactive threat hunting, and more. IBM Security QRadar Vulnerability Manager: This is a comprehensive solution that integrates with other IBM QRadar products, providing a full-spectrum view of network vulnerabilities. It’s especially valuable for enterprises that already rely on IBM infrastructure for security workflows. McAfee Vulnerability Manager: A well-known solution offering robust vulnerability scanning capabilities, with additional features for risk and compliance management. It provides a combination of active and passive monitoring, along with penetration testing and authentication scanning designed to provide maximum protection to sensitive network assets. Choosing the Right Vulnerability Management Tool Choosing the right vulnerability management tool requires in-depth knowledge of your organization’s security and IT infrastructure context. You need to select the tool that matches your unique use cases and security requirements while providing the support you need to achieve long-term business goals. Those goals may change over time, which makes ongoing evaluation of your security tools an even more important strategic asset to keep in your arsenal. Gathering clear and detailed information about your organization’s security posture allows you to flexibility adapt to changes in your IT environment without exposing sensitive assets to additional risk. AlgoSec provides a wide range of flexible options for vulnerability scanning, policy change management, and proactive configuration simulation. Enhance your organization’s security capabilities by deploying a vulnerability management solution that provides the visibility and flexibility you need to stay on top of a challenging industry. Schedule a demo Related Articles 2025 in review: What innovations and milestones defined AlgoSec’s transformative year in 2025? AlgoSec Reviews Mar 19, 2023 · 2 min read Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • AlgoSec | AlgoSec and ServiceNow: Managing Network Security Policies and Processes Within ServiceNow

    AlgoSec’s Integration with ServiceNow allows AlgoSec users to automate security change management and accelerate application deployments... Information Security AlgoSec and ServiceNow: Managing Network Security Policies and Processes Within ServiceNow Amir Erel 2 min read Amir Erel Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 2/3/20 Published AlgoSec’s Integration with ServiceNow allows AlgoSec users to automate security change management and accelerate application deployments within their existing ServiceNow platform It isn’t easy for organizations to get holistic visibility and management across their increasingly complex, hybrid network environments. Application owners need to make changes to existing applications or launch new ones quickly to drive the business. Meanwhile, IT and security teams must maintain security, reduce the risk of outages and misconfigurations, and meet audit and compliance demands. It’s a difficult balance to achieve. In our 2019 cloud security survey , a lack of visibility into their entire network estate and seamless management of cloud and on-prem environments were two of the biggest challenges cited by organizations. Over 40% also reported having a network or application outage, with the leading cause being operational or human errors in making changes. So robust network security management and automation of processes are increasingly mission-critical. To manage network security changes efficiently, application owners prefer to use the familiar tools and workflows that they already know, while security owners need to understand the business context of the policies to ensure that they are making the right decisions to protect the organization’s assets. AlgoSec’s integration with ServiceNow’s IT Service Management solution allows these different stakeholders to share a single management. This bridges the gap between application and security teams and gives them both a holistic view of security, risk and compliance across their entire network environment. This, in turn, accelerates application delivery and strengthens the organization’s security and compliance postures. By integrating the AlgoSec Security Management Suite with ServiceNow, organizations can automate and enrich security policy change management while remaining entirely within the tool their team is already using, with the added benefit of business context. The solution works seamlessly with existing processes and workflows, which helps accelerate the rate of adoption across entire networks. Automating change management processes Making a single change in a complex enterprise environment could take days or even weeks. Using intelligent, highly customizable workflows, AlgoSec automates the entire security policy change process – from planning and design through to submission, proactive risk analysis, implementation, validation and auditing – all with zero-touch, enabling organizations to reduce change request processing times to minutes. By working with the tools that your organization is already familiar with, you don’t need to learn new workflows and user interfaces. Your application and IT teams can continue to use the tools they already know, and encourage organizational buy-in for automated network security policy change management. For more information on AlgoSec’s integration with ServiceNow, download the datasheet or watch the demo . Schedule a demo Related Articles 2025 in review: What innovations and milestones defined AlgoSec’s transformative year in 2025? AlgoSec Reviews Mar 19, 2023 · 2 min read Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • AlgoSec launches its AI-powered Security Platform, to securely manage application-centric connectivity and remediate risk in real time

    The new release deploys advanced AI for fast and accurate application discovery, provides clear visualization and mapping of application connectivity and potential security risks in complex hybrid environments AlgoSec launches its AI-powered Security Platform, to securely manage application-centric connectivity and remediate risk in real time The new release deploys advanced AI for fast and accurate application discovery, provides clear visualization and mapping of application connectivity and potential security risks in complex hybrid environments September 25, 2024 Speak to one of our experts RIDGEFIELD PARK, NJ, September 25, 2024 – Global cybersecurity leader AlgoSec has launched its newest Security Management platform version, featuring advanced artificial intelligence (AI) technology that provides an application-centric security approach and a clearer picture of risks and their impact. With this new release, the AlgoSec platform enables users to accurately identify the business applications running in their complex hybrid network, and leverage intelligent change automation to streamline security change processes, thus improving security and agility. “Security professionals are overwhelmed with a barrage of alerts that provide no context between critical threats and minor issues,” said Eran Shiff , VP Product of AlgoSec. “By mapping applications, security teams can understand their criticality, automate changes and prioritize alerts that truly matter, saving countless hours through automation.” Gartner predicts that by 2027, 50 percent of critical enterprise applications will reside outside of centralized public cloud locations, underscoring the complexity that network infrastructures face. Today’s networks are 100 times more complex than they were 10 years ago, and the pace of deployment and development at which security teams are expected to work is 100 times faster. AI-powered application discovery enhances a security team’s ability to detect and respond to threats in real-time. An application-centric approach automates change management processes, identifies security risks and mitigates risks before they impact the network infrastructure. “In today’s evolving cyber landscape, it’s essential that we rapidly identify and prioritize threats as they occur,” said Robert Eldridge, Security Solutions Director of Natilik. “AlgoSec’s AI-powered platform helps us deliver proactive network visibility and risk mitigation to our clients, keeping them ahead of potential threats”. Securing hybrid infrastructures relies on four pillars that are essential to AlgoSec’s platform update: ● AI-driven application discovery – Advanced AI feature designed to automatically discover and identify the business applications that are running by correlating them to security changes that have been made. ● Intelligent and automated application connectivity change – New enhancements allow security professionals to directly adjust existing Microsoft Azure firewall rules for new application connections. Additionally, there’s added support for application awareness in Check Point R80+ firewalls. ● Reduce risk exposure and minimize attack surface – New features focus on tightening security posture and minimizing potential vulnerabilities. It streamlines Microsoft Azure Firewall rule management by identifying and recommending the removal of unused rules. It reduces risk exposure by automatically generating change management tickets to eliminate overly permissive rules. Additionally, it ensures compliance with the latest ASD-ISM regulations. ● Better visibility across complex hybrid networks – AlgoSec has enriched its capabilities to support visibility of network security devices including: NSX-T Gateway Firewall, Azure Load Balancer, and Google Cloud map and traffic path (in early availability). To learn more about updates to the AlgoSec Security Management platform, click here . AlgoSec will demonstrate the key capabilities of release A33 during its upcoming annual AlgoSummit user event. To register, click here . About AlgoSec AlgoSec, a global cybersecurity leader, empowers organizations to secure application connectivity and cloud-native applications throughout their multi-cloud and hybrid network. Trusted by more than 1,800 of the world’s leading organizations, AlgoSec’s application-centric approach enables secure acceleration of business application deployment by centrally managing application connectivity and security policies across the public clouds, private clouds, containers, and on-premises networks. Using its unique vendor-agnostic deep algorithm for intelligent change management automation, AlgoSec enables the acceleration of digital transformation projects, helps prevent business application downtime, and substantially reduces manual work and exposure to security risks. AlgoSec’s policy management and CNAPP platforms provide a single source for visibility into security and compliance issues within cloud-native applications as well as across the hybrid network environment, to ensure ongoing adherence to internet security standards, industry, and internal regulations. Learn how AlgoSec enables application owners, information security experts, DevSecOps, and cloud security teams to deploy business applications up to 10 times faster while maintaining security at https://www.algosec.com .  MEDIA CONTACT: Megan Davis Alloy, on behalf of AlgoSec [email protected]

bottom of page