

Search results
615 results found with an empty search
- AlgoSec | How to optimize the security policy management lifecycle
Information security is vital to business continuity. Organizations trust their IT teams to enable innovation and business transformation... Risk Management and Vulnerabilities How to optimize the security policy management lifecycle Tsippi Dach 2 min read Tsippi Dach Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 8/9/23 Published Information security is vital to business continuity. Organizations trust their IT teams to enable innovation and business transformation but need them to safeguard digital assets in the process. This leads some leaders to feel that their information security policies are standing in the way of innovation and business agility. Instead of rolling new a new enterprise application and provisioning it for full connectivity from the start, security teams demand weeks or months of time to secure those systems before they’re ready. But this doesn’t mean that cybersecurity is a bottleneck to business agility. The need for speedier deployment doesn’t automatically translate to increased risk. Organizations that manage application connectivity and network security policies using a structured lifecycle approach can improve security without compromising deployment speed. Many challenges stand between organizations and their application and network connectivity goals. Understanding each stage of the lifecycle approach to security policy change management is key to overcoming these obstacles. Challenges to optimizing security policy management ` Complex enterprise infrastructure and compliance requirements A medium-sizded enterprise may have hundreds of servers, systems, and security solutions like firewalls in place. These may be spread across several different cloud providers, with additional inputs from SaaS vendors and other third-party partners. Add in strict regulatory compliance requirements like HIPAA , and the risk management picture gets much more complicated. Even voluntary frameworks like NIST heavily impact an organization’s information security posture, acceptable use policies, and more – without the added risk of non-compliance. Before organizations can optimize their approach to security policy management, they must have visibility and control over an increasingly complex landscape. Without this, making meaningful progress of data classification and retention policies is difficult, if not impossible. Modern workflows involve non-stop change When information technology teams deploy or modify an application, it’s in response to an identified business need. When those deployments get delayed, there is a real business impact. IT departments now need to implement security measures earlier, faster, and more comprehensively than they used to. They must conduct risk assessments and security training processes within ever-smaller timeframes, or risk exposing the organization to vulnerabilities and security breaches . Strong security policies need thousands of custom rules There is no one-size-fits-all solution for managing access control and data protection at the application level. Different organizations have different security postures and security risk profiles. Compliance requirements can change, leading to new security requirements that demand implementation. Enterprise organizations that handle sensitive data and adhere to strict compliance rules must severely restrict access to information systems. It’s not easy to achieve PCI DSS compliance or adhere to GDPR security standards solely through automation – at least, not without a dedicated change management platform like AlgoSec . Effectively managing an enormous volume of custom security rules and authentication policies requires access to scalable security resources under a centralized, well-managed security program. Organizations must ensure their security teams are equipped to enforce data security policies successfully. Inter-department communication needs improvement Application deliver managers, network architects, security professionals, and compliance managers must all contribute to the delivery of new application projects. Achieving clear channels of communication between these different groups is no easy task. In most enterprise environments, these teams speak different technical languages. They draw their data from internally siloed sources, and rarely share comprehensive documentation with one another. In many cases, one or more of these groups are only brought in after everyone else has had their say, which significantly limits the amount of influence they can have. The lifecycle approach to managing IT security policies can help establish a standardized set of security controls that everyone follows. However, it also requires better communication and security awareness from stakeholders throughout the organization. The policy management lifecycle addresses these challenges in five stages ` Without a clear security policy management lifecycle in place, most enterprises end up managing security changes on an ad hoc basis. This puts them at a disadvantage, especially when security resources are stretched thin on incident response and disaster recovery initiatives. Instead of adopting a reactive approach that delays application releases and reduces productivity, organizations can leverage the lifecycle approach to security policy management to address vulnerabilities early in the application development lifecycle. This leaves additional resources available for responding to security incidents, managing security threats, and proactively preventing data breaches. Discover and visualize application connectivity The first stage of the security policy management lifecycle revolves around mapping how your apps connect to each other and to your network setup. The more details can include in this map, the better prepared your IT team will be for handling the challenges of policy management. Performing this discovery process manually can cost enterprise-level security teams a great deal of time and accuracy. There may be thousands of devices on the network, with a complex web of connections between them. Any errors that enter the framework at this stage will be amplified through the later stages – it’s important to get things right at this stage. Automated tools help IT staff improve the speed and accuracy of the discovery and visualization stage. This helps everyone – technical and nontechnical staff included – to understand what apps need to connect and work together properly. Automated tools help translate these needs into language that the rest of the organization can understand, reducing the risk of misconfiguration down the line. Plan and assess security policy changes Once you have a good understanding of how your apps connect with each other and your network setup, you can plan changes more effectively. You want to make sure these changes will allow the organization’s apps to connect with one another and work together without increasing security risks. It’s important to adopt a vulnerability-oriented perspective at this stage. You don’t want to accidentally introduce weak spots that hackers can exploit, or establish policies that are too complex for your organization’s employees to follow. This process usually involves translating application connectivity requests into network operations terms. Your IT team will have to check if the proposed changes are necessary, and predict what the results of implementing those changes might be. This is especially important for cloud-based apps that may change quickly and unpredictably. At the same time, security teams must evaluate the risks and determine whether the changes are compliant with security policy. Automating these tasks as part of a regular cycle ensures the data is always relevant and saves valuable time. Migrate and deploy changes efficiently The process of deploying new security rules is complex, time-consuming, and prone to error . It often stretches the capabilities of security teams that already have a wide range of operational security issues to address at any given time. In between managing incident response and regulatory compliance, they must now also manually update thousands of security rules over a fleet of complex network assets. This process gets a little bit easier when guided by a comprehensive security policy change management framework. But most organizations don’t unlock the true value of the security policy management lifecycle until they adopt automation. Automated security policy management platforms enable organizations to design rule changes intelligently, migrate rules automatically, and push new policies to firewalls through a zero-touch interface. They can even validate whether the intended changes updated correctly. This final step is especially important. Without it, security teams must manually verify whether their new policies successfully address the vulnerabilities the way they’re supposed to. This doesn’t always happen, leaving security teams with a false sense of security. Maintain configurations using templates Most firewalls accumulate thousands of rules as security teams update them against new threats. Many of these rules become outdated and obsolete over time, but remain in place nonetheless. This adds a great deal of complexity to small-scale tasks like change management, troubleshooting issues, and compliance auditing. It can also impact the performance of firewall hardware , which decreases the overall lifespan of expensive physical equipment. Configuration changes and maintenance should include processes for identifying and eliminating rules that are redundant, misconfigured, or obsolete. The cleaner and better-documented the organization’s rulesets are, the easier subsequent configuration changes will be. Rule templates provide a simple solution to this problem. Organizations that create and maintain comprehensive templates for their current firewall rulesets can easily modify, update, and change those rules without having to painstakingly review and update individual devices manually. Decommission obsolete applications completely Every business application will eventually reach the end of its lifecycle. However, many organizations keep decommissioned security policies in place for one of two reasons: Oversight that stems from unstandardized or poorly documented processes, or; Fear that removing policies will negatively impact other, active applications. As these obsolete security policies pile up, they force the organization to spend more time and resources updating their firewall rulesets. This adds bloat to firewall security processes, and increases the risk of misconfigurations that can lead to cyber attacks. A standardized, lifecycle-centric approach to security policy management makes space for the structured decommissioning of obsolete applications and the rules that apply to them. This improves change management and ensures the organization’s security posture is optimally suited for later changes. At the same time, it provides comprehensive visibility that reduces oversight risks and gives security teams fewer unknowns to fear when decommissioning obsolete applications. Many organizations believe that Security stands in the way of the business – particularly when it comes to changing or provisioning connectivity for applications. It can take weeks, or even months to ensure that all the servers, devices, and network segments that support the application can communicate with each other while blocking access to hackers and unauthorized users. It’s a complex and intricate process. This is because, for every single application update or change, Networking and Security teams need to understand how it will affect the information flows between the various firewalls and servers the application relies on, and then change connectivity rules and security policies to ensure that only legitimate traffic is allowed, without creating security gaps or compliance violations. As a result, many enterprises manage security changes on an ad-hoc basis: they move quickly to address the immediate needs of high-profile applications or to resolve critical threats, but have little time left over to maintain network maps, document security policies, or analyze the impact of rule changes on applications. This reactive approach delays application releases, can cause outages and lost productivity, increases the risk of security breaches and puts the brakes on business agility. But it doesn’t have to be this way. Nor is it necessary for businesses to accept greater security risk to satisfy the demand for speed. Accelerating agility without sacrificing security The solution is to manage application connectivity and network security policies through a structured lifecycle methodology, which ensures that the right security policy management activities are performed in the right order, through an automated, repeatable process. This dramatically speeds up application connectivity provisioning and improves business agility, without sacrificing security and compliance. So, what is the network security policy management lifecycle, and how should network and security teams implement a lifecycle approach in their organizations? Discover and visualize The first stage involves creating an accurate, real-time map of application connectivity and the network topology across the entire organization, including on-premise, cloud, and software-defined environments. Without this information, IT staff are essentially working blind, and will inevitably make mistakes and encounter problems down the line. Security policy management solutions can automate the application connectivity discovery, mapping, and documentation processes across the thousands of devices on networks – a task that is enormously time-consuming and labor-intensive if done manually. In addition, the mapping process can help business and technical groups develop a shared understanding of application connectivity requirements. Plan and assess Once there is a clear picture of application connectivity and the network infrastructure, you can start to plan changes more effectively – ensure that proposed changes will provide the required connectivity, while minimizing the risks of introducing vulnerabilities, causing application outages, or compliance violations. Typically, it involves translating application connectivity requests into networking terminology, analyzing the network topology to determine if the changes are really needed, conducting an impact analysis of proposed rule changes (particularly valuable with unpredictable cloud-based applications), performing a risk and compliance assessment, and assessing inputs from vulnerabilities scanners and SIEM solutions. Automating these activities as part of a structured lifecycle keeps data up-to-date, saves time, and ensures that these critical steps are not omitted – helping avoid configuration errors and outages. Functions Of An Automatic Pool Cleaner An automatic pool cleaner is very useful for people who have a bad back and find it hard to manually operate the pool cleaner throughout the pool area. This type of pool cleaner can move along the various areas of a pool automatically. Its main function is to suck up dirt and other debris in the pool. It functions as a vacuum. Automatic pool cleaners may also come in different types and styles. These include automatic pressure-driven cleaners, automatic suction side-drive cleaners, and robotic pool cleaners. Migrate and deploy Deploying connectivity and security rules can be a labor-intensive and error-prone process. Security policy management solutions automate the critical tasks involved, including designing rule changes intelligently, automatically migrating rules, and pushing policies to firewalls and other security devices – all with zero-touch if no problems or exceptions are detected. Crucially, the solution can also validate that the intended changes have been implemented correctly. This last step is often neglected, creating the false impression that application connectivity has been provided, or that vulnerabilities have been removed, when in fact there are time bombs ticking in the network. Maintain Most firewalls accumulate thousands of rules which become outdated or obsolete over the years. Bloated rulesets not only add complexity to daily tasks such as change management, troubleshooting and auditing, but they can also impact the performance of firewall appliances, resulting in decreased hardware lifespan and increased TCO. Cleaning up and optimizing security policies on an ongoing basis can prevent these problems. This includes identifying and eliminating or consolidating redundant and conflicting rules; tightening overly permissive rules; reordering rules; and recertifying expired ones. A clean, well-documented set of security rules helps to prevent business application outages, compliance violations, and security gaps and reduces management time and effort. Decommission Every business application eventually reaches the end of its life: but when they are decommissioned, its security policies are often left in place, either by oversight or from fear that removing policies could negatively affect active business applications. These obsolete or redundant security policies increase the enterprise’s attack surface and add bloat to the firewall ruleset. The lifecycle approach reduces these risks. It provides a structured and automated process for identifying and safely removing redundant rules as soon as applications are decommissioned while verifying that their removal will not impact active applications or create compliance violations. We recently published a white paper that explains the five stages of the security policy management lifecycle in detail. It’s a great primer for any organization looking to move away from a reactive, fire-fighting response to security challenges, to an approach that addresses the challenges of balancing security and risk with business agility. Download your copy here . Schedule a demo Related Articles 2025 in review: What innovations and milestones defined AlgoSec’s transformative year in 2025? AlgoSec Reviews Mar 19, 2023 · 2 min read Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call
- AlgoSec | Modernizing your infrastructure without neglecting security
Kyle Wickert explains how organizations can balance the need to modernize their networks without compromising security For businesses of... Digital Transformation Modernizing your infrastructure without neglecting security Kyle Wickert 2 min read Kyle Wickert Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 8/19/21 Published Kyle Wickert explains how organizations can balance the need to modernize their networks without compromising security For businesses of all shapes and sizes, the inherent value in moving enterprise applications into the cloud is beyond question. The ability to control computing capability at a more granular level can lead to significant cost savings, not to mention the speed at which new applications can be provisioned. Having a modern cloud-based infrastructure makes businesses more agile, allowing them to capitalize on market forces and other new opportunities much quicker than if they depended on on-premises, monolithic architecture alone. However, there is a very real risk that during the goldrush to modernized infrastructures, particularly during the pandemic when the pressure to migrate was accelerated rapidly, businesses might be overlooking the potential blind spot that threatens all businesses indiscriminately, and that is security. One of the biggest challenges for business leaders over the past decade has been managing the delicate balance between infrastructure upgrades and security. Our recent survey found that half of organizations who took part now run over 41% of workloads in the public cloud, and 11% reported a cloud security incident in the last twelve months. If businesses are to succeed and thrive in 2021 and beyond, they must learn how to walk this tightrope effectively. Let’s consider the highs and lows of modernizing legacy infrastructures, and the ways to make it a more productive experience. What are the risks in moving to the cloud? With cloud migration comes risk. Businesses that move into the cloud actually stand to lose a great deal if the process isn’t managed effectively. Moreover, they have some important decisions to make in terms of how they handle application migration. Do they simply move their applications and data into the cloud as they are as a ‘lift and shift’, or do they seek to take a more cloud-native approach and rebuild applications in the cloud to take full advantage of its myriad benefits? Once a business has started this move toward the cloud, it’s very difficult to rewind the process and unpick mistakes that may have been made, so planning really is critical. Then there’s the issue of attack surface area. Legacy on-premises applications might not be the leanest or most efficient, but they are relatively secure by default due to their limited exposure to external environments. Moving said applications onto the cloud has countless benefits to agility, efficiency, and cost, but it also increases the attack surface area for potential hackers. In other words, it gives bots and bad actors a larger target to hit. One of the many traps that businesses fall into is thinking that just because an application is in the cloud, it must be automatically secure. In fact, the reverse is true unless proper due diligence is paid to security during the migration process. The benefits of an app-centric approach One of the ways in which AlgoSec helps its customer master security in the cloud is by approaching it from an app-centric perspective. By understanding how a business uses its applications, including its connectivity paths through the cloud, data centers and SDN fabrics, we can build an application model that generates actionable insights such as the ability to create policy-based risks instead of leaning squarely on firewall controls. This is of particular importance when moving legacy applications onto the cloud. The inherent challenge here is that a business is typically taking a vulnerable application and making it even more vulnerable by moving it off-premise, relying solely on the cloud infrastructure to secure it. To address this, businesses should rank applications in order of sensitivity and vulnerability. In doing so, they may find some quick wins in terms of moving modern applications into the cloud that have less sensitive data. Once these short-term gains are dealt with, NetSecOps can focus on the legacy applications that contain more sensitive data which may require more diligence, time, and focus to move or rebuild securely. Migrating applications to the cloud is no easy feat and it can be a complex process even for the most technically minded NetSecOps. Automation takes a large proportion of the hard work away and enables teams to manage cloud environments efficiently while orchestrating changes across an array of security controls. It brings speed and accuracy to managing security changes and accelerates audit preparation for continuous compliance. Automation also helps organizations overcome skills gaps and staffing limitations. We are likely to see conflict between modernization and security for some time. On one hand, we want to remove the constraints of on-premises infrastructure as quickly as possible to leverage the endless possibilities of cloud. On the other hand, we have to safeguard against the opportunistic hackers waiting on the fray for the perfect time to strike. By following the guidelines set out in front of them, businesses can modernize without compromise. To learn more about migrating enterprise apps into the cloud without compromising on security, and how a DevSecOps approach could help your business modernize safely, watch our recent Bright TALK webinar here . Alternatively, get in touch or book a free demo . Schedule a demo Related Articles 2025 in review: What innovations and milestones defined AlgoSec’s transformative year in 2025? AlgoSec Reviews Mar 19, 2023 · 2 min read Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call
- Sunburst Backdoor A deeper look into The SolarWinds’ Supply Chain Malware - AlgoSec
Sunburst Backdoor A deeper look into The SolarWinds’ Supply Chain Malware Download PDF Schedule time with one of our experts Schedule time with one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Continue
- ALGOSEC CLOUD - AlgoSec
ALGOSEC CLOUD Download PDF Schedule time with one of our experts Schedule time with one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Continue
- Building trust in automation - AlgoSec
Building trust in automation WhitePaper Download PDF Schedule time with one of our experts Schedule time with one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Continue
- AlgoSec | A Guide to Upskilling Your Cloud Architects & Security Teams in 2023
Cloud threats are at an all-time high. But not only that, hackers are becoming more sophisticated with cutting-edge tools and new ways to... Cloud Security A Guide to Upskilling Your Cloud Architects & Security Teams in 2023 Rony Moshkovich 2 min read Rony Moshkovich Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 8/2/23 Published Cloud threats are at an all-time high. But not only that, hackers are becoming more sophisticated with cutting-edge tools and new ways to attack your systems. Cloud service providers can only do so much. So, most of the responsibility for securing your data and applications will still fall on you. This makes it critical to equip your organization’s cloud architects and security teams with the necessary skills that help them stay ahead of the evolving threat landscape. Although the core qualities of a cloud architect remain the same, upskilling requires them to learn emerging skills in strategy, leadership, operational, and technical areas. Doing this makes your cloud architects and security teams well-rounded to solve complex cloud issues and ensure the successful design of cloud security architecture. Here, we’ll outline the top skills for cloud architects. This can be a guide for upskilling your current security team and hiring new cloud security architects. But besides the emerging skills, what are the core responsibilities of a cloud security architect? Responsibilities of Cloud Security Architects A cloud security architect builds, designs, and deploys security systems and controls for cloud-based computing services and data storage systems. Their responsibilities will likely depend on your organization’s cloud security strategy. Here are some of them: 1. Plan and Manage the Organization’s Cloud Security Architecture and Strategy: Security architects must work with other security team members and employees to ensure the security architecture aligns with your organization’s strategic goals. 2. Select Appropriate Security Tools and Controls: Cloud security architects must understand the capabilities and limitations of cloud security tools and controls and contribute when selecting the appropriate ones. This includes existing enterprise tools with extensibility to cloud environments, cloud-native security controls, and third-party services. They are responsible for designing new security protocols whenever needed and testing them to ensure they work as expected. 3. Determine Areas of Deployments for Security Controls: After selecting the right tools, controls, and measures, architects must also determine where they should be deployed within the cloud security architecture. 4. Participating in Forensic Investigations: Security architects may also participate in digital forensics and incident response during and after events. These investigations can help determine how future incidents can be prevented. 5. Define Design Principles that Govern Cloud Security Decisions: Cloud security architects will outline design principles that will be used to make choices on the security tools and controls to be deployed, where, and from which sources or vendors. 6. Educating employees on data security best practices: Untrained employees can undo the efforts of cloud security architects. So, security architects must educate technical and non-technical employees on the importance of data security. This includes best practices for creating strong passwords, identifying social engineering attacks, and protecting sensitive information. Best Practices for Prioritizing Cloud Security Architecture Skills Like many other organizations, there’s a good chance your company has moved (or is in the process of moving) all or part of its resources to the cloud. This could either be a cloud-first or cloud-only strategy. As such, they must implement strong security measures that protect the enterprise from emerging threats and intrusions. Cloud security architecture is only one of many aspects of cloud security disciplines. And professionals specializing in this field must advance their skillset to make proper selections for security technologies, procedures, and the entire architecture. However, your cloud security architects cannot learn everything. So, you must prioritize and determine the skills that will help them become better architects and deliver effective security architectures for your organization. To do this, you may want to consider the demand and usage of the skill in your organization. Will upskilling them with these skills solve any key challenge or pain point in your organization? You can achieve this by identifying the native security tools key to business requirements, compliance adherence, and how cloud risks can be managed effectively. Additionally, you should consider the relevance of the skill to the current cloud security ecosystem. Can they apply this skill immediately? Does it make them better cloud security architects? Lastly, different cloud deployment (e.g., a public, private, edge, and distributed cloud) or cloud service models (e.g., Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS), and Software-as-a-Service (SaaS)) bring unique challenges that demand different skillsets. So, you must identify the necessary skills peculiar to each proposed project. Once you have all these figured out, here are some must-have skillsets for cloud security architects. Critical Skills for Cloud Security Architect Cloud security architects need several common skills, like knowledge of programming languages (.NET, PHP, Python, Java, Ruby, etc.), network integration with cloud services, and operating systems (Windows, macOS, and Linux). However, due to the evolving nature of cloud threats, more skills are required. Training your security teams and architects can have more advantages than onboarding new recruits. This is because existing teams are already familiar with your organization’s processes, culture, and values. However, whether you’re hiring new cloud security architects or upskilling your current workforce, here are the most valuable skills to look out for or learn. 1. Experience in cloud deployment models (IaaS, PaaS, and SaaS) It’s important to have cloud architects and security teams that integrate various security components in different cloud deployments for optimal results. They must understand the appropriate security capabilities and patterns for each deployment. This includes adapting to unique security requirements during deployment, combining cloud-native and third-party tools, and understanding the shared responsibility model between the CSP and your organization. 2. Knowledge of cloud security frameworks and standards Cloud security frameworks, standards, and methodologies provide a structured approach to security activities. Interpreting and applying these frameworks and standards is a critical skill for security architects. Some cloud security frameworks and standards include ISO 27001, ISAE 3402, CSA STAR, and CIS benchmarks. Familiarity with regional or industry-specific requirements like HIPAA, CCPA, and PCI DSS can ensure compliance with regulatory requirements. Best practices like the AWS Well-Architected Framework, Microsoft Cloud Security Benchmark, and Microsoft Cybersecurity Reference Architectures are also necessary skills. 3. Understanding of Native Cloud Security Tools and Where to Apply Them Although most CSPs have native tools that streamline your cloud security policies, understanding which tools your organization needs and where is a must-have skill. There are a few reasons why; it’s cost-effective, integrates seamlessly with the respective cloud platform, enhances management and configuration, and aligns with the CSP’s security updates. Still, not all native tools are necessary for your cloud architecture. As native security tools evolve, cloud architects must constantly be ahead by understanding their capabilities. 4. Knowledge of Cloud Identity and Access Management (IAM) Patterns IAM is essential for managing user access and permissions within the cloud environment. Familiarity with IAM patterns ensures proper security controls are in place. Note that popular cloud service providers, like Amazon Web Services, Microsoft Azure, and Google Cloud Platform, may have different processes for implementing IAM. However, the key principles of IAM policies remain. So, your cloud architects must understand how to define appropriate IAM measures for access controls, user identities, authentication techniques like multi-factor authentication (MFA) or single sign-on (SSO), and limiting data exfiltration risks in SaaS apps. 5. Proficiency with Cloud-Native Application Protection Platforms CNAPP is a cloud-native security model that combines the capabilities of Cloud Security Posture Management (CSPM), Cloud Workload Protection Platform (CWPP), and Cloud Service Network Security (CSNS) into a single platform. Cloud solutions like this simplify monitoring, detecting, and mitigating cloud security threats and vulnerabilities. As the nature of threats advances, using CNAPPs like Prevasio can provide comprehensive visibility and security of your cloud assets like Virtual Machines, containers, object storage, etc. CNAPPs enable cloud security architects to enhance risk prioritization by providing valuable insights into Kubernetes stack security configuration through improved assessments. 6. Aligning Your Cloud Security Architecture with Business Requirements It’s necessary to align your cloud security architecture with your business’s strategic goals. Every organization has unique requirements, and your risk tolerance levels will differ. When security architects are equipped to understand how to bridge security architecture and business requirements, they can ensure all security measures and control are calibrated to mitigate risks. This allows you to prioritize security controls, ensures optimal resource allocation, and improves compliance with industry-specific regulatory requirements. 7. Experience with Legacy Information Systems Although cloud adoption is increasing, many organizations have still not moved all their assets to the cloud. At some point, some of your on-premises legacy systems may need to be hosted in a cloud environment. However, legacy information systems’ architecture, technologies, and security mechanisms differ from modern cloud environments. This makes it important to have cloud security architects with experience working with legacy information systems. Their knowledge will help your organization solve any integration challenges when moving to the cloud. It will also help you avoid security vulnerabilities associated with legacy systems and ensure continuity and interoperability (such as data synchronization and maintaining data integrity) between these systems and cloud technologies. 8. Proficiency with Databases, Networks, and Database Management Systems (DBMS) Cloud security architects must also understand how databases and database management systems (DBMS) work. This knowledge allows them to design and implement the right measures that protect data stored within the cloud infrastructure. Proficiency with databases can also help them implement appropriate access controls and authentication measures for securing databases in the cloud. For example, they can enforce role-based access controls (RBAC) within the database environment. 9. Solid Understanding of Cloud DevOps DevOps is increasingly becoming more adopted than traditional software development processes. So, it’s necessary to help your cloud security architects embrace and support DevOps practices. This involves developing skills related to application and infrastructure delivery. They should familiarize themselves with tools that enable integration and automation throughout the software delivery lifecycle. Additionally, architects should understand agile development processes and actively work to ensure that security is seamlessly incorporated into the delivery process. Other crucial skills to consider include cloud risk management for enterprises, understanding business architecture, and approaches to container service security. Conclusion By upskilling your cloud security architects, you’re investing in their personal development and equipping them with skills to navigate the rapidly evolving cloud threat landscape. It allows them to stay ahead of emerging threats, align cloud security practices with your business requirements, and optimize cloud-native security tools. Cutting-edge solutions like Cloud-Native Application Protection Platforms (CNAPPs) are specifically designed to help your organization address the unique challenges of cloud deployments. With Prevasio, your security architects and teams are empowered with automation, application security, native integration, API security testing, and cloud-specific threat mitigation capabilities. Prevasio’s agentless CNAPP provides increased risk visibility and helps your cloud security architects implement best practices. Contact us now to learn more about how our platform can help scale your cloud security. Schedule a demo Related Articles 2025 in review: What innovations and milestones defined AlgoSec’s transformative year in 2025? AlgoSec Reviews Mar 19, 2023 · 2 min read Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call
- Secure application connectivity across your hybrid environment - AlgoSec
Secure application connectivity across your hybrid environment E-BOOK Download PDF Schedule time with one of our experts Schedule time with one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Continue
- AlgoSec acquires Prevasio to disrupt the Agentless Cloud Security market
Organizations of all sizes can now protect their cloud-native applications easily and cost-effectively across containers and all other cloud assets AlgoSec acquires Prevasio to disrupt the Agentless Cloud Security market Organizations of all sizes can now protect their cloud-native applications easily and cost-effectively across containers and all other cloud assets December 7, 2022 Speak to one of our experts Ridgefield Park, NJ, December 6, 2022 – AlgoSec, a global cybersecurity leader in securing application connectivity, announced today that it has acquired Prevasio, a SaaS cloud-native application protection platform (CNAPP) that includes an agentless cloud security posture management (CSPM) platform, anti-malware scan, vulnerability assessment and dynamic analysis for containers. As applications rapidly migrate to the Cloud, security teams are being flooded with alerts. These teams are struggling to detect and prioritize risks through Cloud providers’ native security controls, especially in multi-cloud environments. Furthermore, security teams are hard-pressed to find solutions that meet their budgetary restrictions. To answer this need, AlgoSec will offer the Prevasio solution at aggressive pricing to new customers, as well as the existing 1,800 blue chip enterprise organizations they currently serve, allowing them to reduce their cloud security costs. Prevasio’s user-friendly, cost-effective SaaS solution is designed for hardening security posture across all cloud assets, including containers. The solution provides increased visibility into security issues and compliance gaps, enabling the cloud operations and security teams to prioritize risks and comply with CIS benchmarks. Prevasio customers have successfully reduced administration time and achieved operational cost reductions, even across small teams, within days of operationalization. Leveraging patented technology developed by SRI International, one of the world’s largest research institutes and the developer of Siri and many other leading technologies, Prevasio’s key capabilities include: Analysis of all assets across AWS, Azure, and Google Cloud, offering a unified view in a single pane of glass Prioritized risk according to CIS benchmarks, HIPPA and PCI regulations Blazing fast static- and dynamic- agentless vulnerability scanning of containers Assessment and detection of cybersecurity threats Instantaneous connection to AWS, Azure, or Google Cloud accounts without installation or deployment Furthermore, AlgoSec will incorporate SRI artificial intelligence (AI) capabilities into the Prevasio solution. “Applications are the lifeblood of organizations. As such, our customers have an urgent need to effectively secure the connectivity of those applications across cloud and hybrid estates to avoid unpleasant surprises. With Prevasio, organizations can now confidently secure their cloud-native applications to increase organizational agility and harden security posture,” said Yuval Baron, AlgoSec CEO. For a free trial of the Prevasio solution, click here . About AlgoSec AlgoSec, a global cybersecurity leader, empowers organizations to secure application connectivity by automating connectivity flows and security policy, anywhere. The AlgoSec platform enables the world’s most complex organizations to gain visibility, reduce risk, achieve compliance at the application-level and process changes at zero-touch across the hybrid network. AlgoSec’s patented application-centric view of the hybrid network enables business owners, application owners, and information security professionals to talk the same language, so organizations can deliver business applications faster while achieving a heightened security posture. Over 1,800 of the world’s leading organizations trust AlgoSec to help secure their most critical workloads across public cloud, private cloud, containers, and on-premises networks. About Prevasio Prevasio, an AlgoSec company, helps organizations of all sizes protect their cloud-native applications across containers and all other cloud assets. Prevasio’s agentless cloud-native application protection platform (CNAPP) provides increased visibility into security and compliance gaps, enabling the cloud operations and security teams to prioritize risks and ensure compliance with internet security benchmarks. Acquired by AlgoSec in 2022, Prevasio combines cloud-native security with SRI International’s proprietary AI capabilities and AlgoSec’s expertise in securing 1,800 of the world’s most complex organizations.
- FISMA compliance defined: Requirements & best practices | AlgoSec
Understand the Federal Information Security Management Act (FISMA). Learn key requirements, best practices, and how to achieve and maintain FISMA compliance. FISMA compliance defined: Requirements & best practices Everything You wanted to know about the Federal Information Security Management Act (FISMA) The Federal Information Security Management Act (FISMA) is a U.S. federal law that requires federal government agencies and their third-party partners to implement an information security program to protect their sensitive data. It provides a comprehensive security and risk management framework to implement effective controls for federal information systems. Introduced in 2002, FISMA is part of the E-Government Act of 2002 that’s aimed at improving the management of electronic government services and processes. Both these U.S. government regulations are implemented to uphold federal data security standards and protect sensitive data in government systems. FISMA 2002 was amended by the Federal Information Security Modernization Act of 2014 (FISMA 2014). Schedule a Demo What is FISMA compliance? FISMA compliance means adhering to a set of policies, standards, and guidelines to protect the personal or sensitive information contained in government systems. FISMA requires all government agencies and their vendors, service providers, and contractors to improve their information security controls based on these pre-defined requirements. Like FISMA, the Federal Risk and Authorization Management Program (FedRAMP) enables federal agencies and their vendors to protect government data, albeit for cloud services. FISMA is jointly overseen by the Department of Homeland Security (DHS) and the National Institute of Standards and Technology (NIST). NIST develops the FISMA standards and guidelines – including the minimum security requirements – that bolster the IT security and risk management practices of agencies and their contractors. The DHS administers these programs to help maximize federal information system security. FISMA non-compliance penalties FISMA non-compliance can result in many penalties, including reduced federal funding and censure by the U.S. Congress. Companies can also lose federal contracts and suffer damage to their reputation. Further, non-compliance indicates a poor cybersecurity infrastructure, which may result in costly cyberattacks or data breaches, which could then result in regulatory fines or legal penalties. Schedule a Demo Who must be FISMA-compliant? FISMA’s data protection rules were originally applicable only to U.S. federal agencies. While these standards are still applicable to all federal agencies without exception, they are now applicable to other organizations as well. Thus, any third-party contractor or other organization that provides services to a federal agency and handles sensitive information on behalf of the government must also comply with FISMA. Thus the list of organizations that must comply with FISMA includes: Public or private sector organizations having contractual agreements with federal agencies Public or private organizations that support a federal program or receive grants from federal agencies State agencies like Medicare and Medicaid Schedule a Demo What are the FISMA compliance requirements? The seven key requirements of FISMA compliance are: 1. Maintain an inventory of information systems All federal agencies and their contractors must maintain an updated list of their IT systems. They must also identify and track the integrations between these systems and any other systems in the network. The inventory should include systems that are not operated by or under their direct control. 2. Categorize information security risks Organizations must categorize their information and information systems in order of risk. Such categorizations can help them to focus their security efforts on high-risk areas and ensure that sensitive information is given the highest level of security. The NIST’s FIPS 199 standard provides risk categorization guidelines. It also defines a range of risk levels that organizations can assign to their information systems during risk categorization. 3. Implement security controls Since FISMA’s purpose is to protect the information in government systems, security controls that provide this protection are a mandatory requirement. Under FISMA, all government information systems must meet the minimum security requirements defined in FIPS 200. Organizations are not required to implement every single control. However, they must implement the controls that are relevant to them and their systems. They must also document the selected controls in their system security plan (SSP). NIST 800-53 (NIST special publication or SP) provides a list of suggested security controls for FISMA compliance. 4. Conduct risk assessments A risk assessment is a review of an organization’s security program to identify and assess potential risks. After identifying cyber threats and vulnerabilities, the organization should map them to the security controls that could mitigate them. Based on the likelihood and impact of a security incident, they must determine the risk of that threat. The final risk assessment includes risk calculations of all possible security events plus information about whether the organization will accept or mitigate each of these risks. NIST SP 800-30 provides guidance to conduct risk assessments for FISMA compliance. The NIST recommends identifying risks at three levels: organizational, business process, and information system. 5. Create a system security plan All federal agencies must implement an SSP to help with the implementation of security controls. They must also regularly maintain it and update it annually to ensure that they can implement the best and most up-to-date security solutions. The SSP should include information about the organization’s security policies and controls, and a timeline to introduce further controls. It can also include security best practices. The document is a major input in the agency’s (or third party’s) security certification and accreditation process. 6. Conduct annual security reviews Under FISMA, all program officers, compliance officials, and agency heads must conduct and oversee annual security reviews to confirm that the implemented security controls are sufficient and information security risks are at a minimum level. Agency officials can also accredit their information systems. By doing this, they accept responsibility for the security of these systems and are accountable for any adverse impacts of security incidents. Accreditation is part of the four-phase FISMA certification process. Its other three phases are initiation and planning, certification, and continuous monitoring. 7. Continuously monitor information systems Organizations must monitor their implemented security controls and document system changes and modifications. If they make major changes, they should also conduct an updated risk assessment. They may also need to be recertified. Schedule a Demo What are the benefits of FISMA compliance? FISMA compliance benefits both government agencies and their contractors and vendors. By following its guidelines and implementing its requirements, they can: Adopt a robust risk management-centered approach to security planning and implementation Continually assess, monitor, and optimize their security ecosystem Increase org-wide awareness about the need to secure sensitive data Improve incident response and accelerate incident and risk remediation Benefits of FISMA compliance for federal agencies FISMA compliance increases the cybersecurity focus within federal agencies. By implementing its mandated security controls, it can protect its information and information systems, and also protect the privacy of individuals and national security. In addition, by continuously monitoring their controls, they can maintain a consistently strong security posture. They can also eliminate newly-discovered vulnerabilities quickly and cost-effectively. Benefits of FISMA compliance for other organizations FISMA-compliant organizations can strengthen their security postures by implementing its security best practices. They can better protect their data and the government’s data, prevent data breaches and improve incident response planning. Furthermore, they can demonstrate to federal agencies that they have implemented FISMA’s recommended security controls, which gives them an advantage when trying to get new business from these agencies. Schedule a Demo The three levels of FISMA compliance FISMA defines three compliance levels, which refer to the possible impact of a security breach on an organization. These three impact levels are: 1. Low impact Low impact means that the loss of confidentiality, integrity, or availability is likely to have a limited adverse effect on the organization’s operations, assets, or people. For this reason, the security controls for these systems or data types need only meet the low level of FISMA compliance. 2. Moderate impact A moderate impact incident is one in which the loss of confidentiality, integrity, or availability could have serious adverse consequences for the organization’s operations, assets, or people. For example, it may result in significant financial loss to the organization or significant harm to individuals. However, it is unlikely to cause severe damage or result in the loss of life. 3. High impact The compromise of a high-impact information system could have catastrophic consequences for the organization’s operations, assets, or people. For example, a breach may prevent the organization from performing its primary functions, resulting in major financial loss. It may also cause major damage to assets or result in severe harm to individuals (e.g., loss of life or life-threatening injuries). To prevent such consequences, these systems must be protected with the strongest controls. Schedule a Demo FISMA compliance best practices Following the best practices outlined below can ease the FISMA compliance effort and enable organizations to meet all applicable FISMA requirements: Identify the information that must be protected and classify it based on its sensitivity level as it is created Create a security plan to monitor data activity and detect threats Implement automatic encryption for sensitive data Conduct regular risk assessments to identify and fix vulnerabilities and outdated policies Regularly monitor information security systems Provide cybersecurity awareness training to employees Maintain evidence of FISMA compliance, including records of system inventories, risk categorization efforts, security controls, SSPs, certifications, and accreditations Stay updated on changes to FISMA standards, new NIST guidelines, and evolving security best practices Schedule a Demo How AlgoSec can help you with FISMA compliance? Using the AlgoSec platform , you can instantly and clearly see which applications expose you to FISMA compliance violations. You can also automatically generate pre-populated, audit-ready compliance reports to reduce your audit preparation efforts and costs and enhance your audit readiness. AlgoSec will also uncover gaps in your FISMA compliance posture and proactively check every change for possible compliance violations. Schedule a Demo Select a size Everything You wanted to know about the Federal Information Security Management Act (FISMA) What is FISMA compliance? Who must be FISMA-compliant? What are the FISMA compliance requirements? What are the benefits of FISMA compliance? The three levels of FISMA compliance FISMA compliance best practices How AlgoSec can help you with FISMA compliance? Get the latest insights from the experts Use these six best practices to simplify compliance and risk mitigation with the AlgoSec platform White paper Learn how AlgoSec can help you pass PCI-DSS Audits and ensure continuous compliance Solution overview See how this customer improved compliance readiness and risk management with AlgoSec Case study Choose a better way to manage your network
- Optimizing Network Security and Accelerating Operations for a Major Telecommunications Provider - AlgoSec
Optimizing Network Security and Accelerating Operations for a Major Telecommunications Provider Case Study Download PDF Schedule time with one of our experts Schedule time with one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Continue
- Executive brochure – The business benefits of AlgoSec Horizon platform - AlgoSec
Executive brochure – The business benefits of AlgoSec Horizon platform Brochure Download PDF Schedule time with one of our experts Schedule time with one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Continue
- Secure your application delivery pipeline - AlgoSec
Secure your application delivery pipeline Download PDF Schedule time with one of our experts Schedule time with one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Continue


