top of page

Search results

609 results found with an empty search

  • AlgoSec | The AlgoSec perspective: an in-depth interview with Kyle Wickert, worldwide strategic architect

    Explore AlgoSec's visionary approach to secure connectivity: predictive solutions, sector-specific innovation, and empowering businesses for Uncategorized The AlgoSec perspective: an in-depth interview with Kyle Wickert, worldwide strategic architect Adel Osta Dadan 2 min read Adel Osta Dadan Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 6/15/24 Published “We’re not just responding to the digital transformation anymore; it’s here, and frankly, most of us aren’t ready for it yet. One key insight from my time at AlgoSec is that at our very core, our mission is to enable seamless interconnectivity. This means staying ahead, embracing change as an opportunity for growth,” shares Kyle Wickert, highlighting the essence of AlgoSec’s forward-thinking approach. His role as Worldwide Strategic Architect has positioned him at the confluence of technology and strategic innovation, where he emphasizes the importance of anticipating change rather than merely reacting to it. As our conversation unfolded, Wickert elaborated on why solutions should not just be reactive but predictive, setting AlgoSec apart by prioritizing applications on a macro level. “It’s about understanding the broader implications of connectivity and security, ensuring our solutions are not just timely but timeless,” he added, reflecting on the dynamic nature of digital security. Strategically navigating the digital space : “In this digital epoch, every business is inherently a technology business,” asserts Wickert. This conviction drives AlgoSec’s strategy, focusing on securing application connectivity as a means to empower businesses. By transforming potential vulnerabilities into opportunities, AlgoSec ensures businesses can leverage their technological infrastructure for sustained success. “It’s about turning challenges into catalysts for growth,” Wickert emphasizes, showcasing AlgoSec’s role in fostering innovation. Empowering sector-specific excellence : The unique demands of sectors like healthcare and finance bring to light the critical need for tailored security solutions. Wickert points out, “As these industries continue to evolve, the demand for secure, seamless connectivity becomes increasingly paramount.” AlgoSec’s commitment to developing solutions that address these specific challenges underscores its dedication to not just ensuring survival but promoting excellence across diverse sectors. Orchestrating security with business strategy : Wickert believes in the symbiosis of strategy and security, where technological solutions are in tune with business objectives. “Securing application connectivity means creating a seamless blend of technology with business goals,” he states. This philosophy is embodied in AlgoSec’s comprehensive suite of solutions, which are designed to align digital security measures with the rhythm of business expansion and strategic development. Championing a human-centric digital future : At the heart of AlgoSec’s ethos is a deep-seated belief in the power of technology to serve human progress. “We’re not just building solutions; we’re enabling futures where technology amplifies human potential and creativity,” Wickert passionately notes. This vision guides AlgoSec’s approach, ensuring that their security solutions empower rather than constrain, fostering an environment ripe for innovation and advancement. Leading the charge in cybersecurity innovation : Looking forward, AlgoSec is committed to being at the vanguard of cybersecurity innovation. “Our vision looks beyond the immediate horizon, anticipating the evolving needs of tomorrow’s businesses,” Wickert shares. With a focus on strategic foresight and a commitment to innovative solutions, AlgoSec is poised to guide enterprises through the intricacies of digital transformation towards a future that is not only secure but also thriving. Schedule a demo Related Articles 2025 in review: What innovations and milestones defined AlgoSec’s transformative year in 2025? AlgoSec Reviews Mar 19, 2023 · 2 min read Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • AlgoSec | Managing the switch – Making the move to Cisco Meraki

    Challenges with managing Cisco Meraki in a complex enterprise environment We have worked closely with Cisco for many years in large... Application Connectivity Management Managing the switch – Making the move to Cisco Meraki Jeremiah Cornelius 2 min read Jeremiah Cornelius Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 1/4/24 Published Challenges with managing Cisco Meraki in a complex enterprise environment We have worked closely with Cisco for many years in large complex environments and have developed integrations to support a variety of Cisco solutions for our joint customers. In recent years we have seen an increased interest in the use of Cisco Meraki devices by enterprises that are also AlgoSec customers. In this post, we will highlight some of the AlgoSec capabilities that can quickly add value for Meraki customers. Meeting the Enterprise The Cisco Meraki MX is a multifunctional security and SD-WAN enterprise appliance with a wide set of capabilities to address multiple use cases—from an all-in-one device. Organizations across all industries rely on the MX to deliver secure connectivity to hub locations or multi cloud environments. The MX is 100% cloud-managed, so installation and remote management are truly zero-touch, making it ideal for distributed branches, campuses, and data center locations. In our talks with AlgoSec customers and partner architects, it is evident that the benefits that originally made Meraki MX popular in commercial deployments were just as appealing to enterprises. Many enterprises are now faced with waves of expansion in employees working from home, and burgeoning demands for scalable remote access – along with increasing network demands by regional centers. The leader of one security team I spoke with put it very well, “We are deploying to 1,200 locations in four global regions, planned to be 1,500 by year’s end. The choice of Meraki is for us a ‘no-brainer.’ If you haven’t already, I know that you’re going to see this become a more popular option with many big operations.” Natural Companions – AlgoSec ASMS and Cisco Meraki-MX This is a natural situation to meet enhanced requirements with AlgoSec ASMS — reinforcing Meraki’s impressive capabilities and scale as a combined, enterprise-class solution. ASMS brings to the table traffic planning and visualization, rules optimization and management, and a solution to address enterprise-level requirements for policy reporting and compliance auditing. In AlgoSec, we’re proud of AlgoSec FireFlow’s ability to model the security-connected state of any given endpoints across an entire enterprise. Now our customers with Meraki MX can extend this technology that they know and trust, analyze real traffic in complex deployments, and acquire an understanding of the requirements and impact of changes delivered to their users and applications that are connected by Meraki deployments. As it’s unlikely that your needs, or those of any data center and enterprise, are met by a single vendor and model, AlgoSec unifies operations of the Meraki-MX with those of the other technologies, such as enterprise NGFW and software-defined network fabrics. Our application-centric approach means that Meraki MX can be a component in delivering solutions for zero-trust and microsegmentation with other Cisco technology like Cisco ACI, and other third parties. Cisco Meraki– Product Demo If all of this sounds interesting, take a look for yourself to see how AlgoSec helps with common challenges in these enterprise environments. More Where This Came From The AlgoSec integration with Cisco Meraki-MX is delivering solutions our customers want. If you want to discover more about the Meraki and AlgoSec joint solution, contact us at AlgoSec! We work together with Cisco teams and resellers and will be glad to schedule a meeting to share more details or walk through a more in depth demo. Schedule a demo Related Articles 2025 in review: What innovations and milestones defined AlgoSec’s transformative year in 2025? AlgoSec Reviews Mar 19, 2023 · 2 min read Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • AlgoSec | Understanding the human-centered approach for cloud network security with GigaOm’s 2024 insights

    2024 just started but cloud network security insights are already emerging. Amongst all the research and insights GigaOm’s comprehensive... Cloud Network Security Understanding the human-centered approach for cloud network security with GigaOm’s 2024 insights Adel Osta Dadan 2 min read Adel Osta Dadan Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 1/23/24 Published 2024 just started but cloud network security insights are already emerging. Amongst all the research and insights GigaOm’s comprehensive research emerges as a vital compass. More than just a collection of data and trends, it’s a beacon for us – the decision-makers and thought leaders – guiding us to navigate these challenges with a focus on the human element behind the technology. GigaOm showcased indicators to where the market is heading. Understanding multi-cloud complexity : GigaOm’s insights highlight the intricacies of multi-cloud environments. It’s about recognizing the human factor in these ecosystems – how these technologies affect our teams and processes, and ultimately, our business objectives. Redefining security boundaries : The shift to adaptive security boundaries, as noted by GigaOm, is a testament to our evolving work environments. This new perspective acknowledges the need for flexible security measures that resonate with our changing human interactions and work dynamics. The human impact of misconfigurations : Focusing on misconfiguration and anomaly detection goes beyond technical prowess. GigaOm’s emphasis here is about protecting our digital world from threats that carry significant human consequences, such as compromised personal data and the resulting erosion of trust. To learn more about cloud misconfigurations and risk check out our joint webinar with SANS . Leadership in a digitally transformed world Cultivating a Zero Trust culture : Implementing Zero Trust, as GigaOm advises, is more than a policy change. It’s about cultivating a mindset of continuous verification and trust within our organizations, reflecting the interconnected nature of our modern workspaces. Building relationships with vendors : GigaOm’s analysis of vendors reminds us that choosing a security partner is as much about forging a relationship that aligns with our organizational values as it is about technical compatibility. Security as a core organizational value : According to GigaOm, integrating security into our business strategy is paramount. It’s about making security an inherent part of our organizational ethos, not just a standalone strategy. The human stories behind vendors GigaOm’s insights into vendors reveal the visions and values driving these companies. This understanding helps us see them not merely as service providers but as partners sharing our journey toward a secure digital future. Embracing GigaOm’s vision: A collaborative path forward GigaOm’s research serves as more than just guidance; it’s a catalyst for collaborative discussions among us – leaders, innovators, and technologists. It challenges us to think beyond just the technical aspects and consider the human impacts of our cybersecurity decisions. Schedule a demo Related Articles 2025 in review: What innovations and milestones defined AlgoSec’s transformative year in 2025? AlgoSec Reviews Mar 19, 2023 · 2 min read Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • AlgoSec | Stop hackers from poisoning the well: Protecting critical infrastructure against cyber-attacks

    Attacks on water treatment plants show just how vulnerable critical infrastructure is to hacking – here’s how these vital services should... Cyber Attacks & Incident Response Stop hackers from poisoning the well: Protecting critical infrastructure against cyber-attacks Tsippi Dach 2 min read Tsippi Dach Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 3/31/21 Published Attacks on water treatment plants show just how vulnerable critical infrastructure is to hacking – here’s how these vital services should be protected. Criminals plotting to poison a city’s water supply is a recurring theme in TV and movie thrillers, such as 2005’s Batman Begins. But as we’ve seen recently, it’s more than just a plot device: it’s a cyber-threat which is all too real. During the past 12 months, there have been two high-profile attacks on water treatment systems that serve local populations, both with the aim of causing harm to citizens. The first was in April 2020, targeting a plant in Israel . Intelligence sources said that hackers gained access to the plant and tried altering the chlorine levels in drinking water – but luckily the attack was detected and stopped. And in early February, a hacker gained access to the water system of Oldsmar, Florida and tried to pump in a dangerous amount of sodium hydroxide. The hacker succeeded in starting to add the chemical, but luckily a worker spotted what was happening and reversed the action. But what could have happened if those timely interventions had not been made? These incidents are a clear reminder that critical national infrastructure is vulnerable to attacks – and that those attacks will keep on happening, with the potential to impact the lives of millions of people.  And of course, the Covid-19 pandemic has further highlighted how essential critical infrastructure is to our daily lives. So how can better security be built into critical infrastructure systems, to stop attackers being able to breach them and disrupt day-to-day operations?  It’s a huge challenge, because of the variety and complexity of the networks and systems in use across different industry sectors worldwide. Different systems but common security problems For example, in water and power utilities, there are large numbers of cyber-physical systems consisting of industrial equipment such as turbines, pumps and switches, which in turn are managed by a range of different industrial control systems (ICS). These were not designed with security in mind:  they are simply machines with computerized controllers that enact the instructions they receive from operators.  The communications between the operator and the controllers are done via IP-based networks – which, without proper network defenses, means they can be accessed over the Internet – which is the vector that hackers exploit. As such, irrespective of the differences between ICS controls, the security challenges for all critical infrastructure organizations are similar:  hackers must be stopped from being able to infiltrate networks; if they do succeed in breaching the organization’s defenses, they must be prevented from being able to move laterally across networks and gain access to critical systems. This means  network segmentation  is one of the core strategies for securing critical infrastructure, to keep operational systems separate from other networks in the organization and from the public Internet and surround them with security gateways so that they cannot be accessed by unauthorized people. In the attack examples we mentioned earlier, properly implemented segmentation would prevent a hacker from being able to access the PC which controls the water plant’s pumps and valves. With damaging ransomware attacks increasing over the past year, which also exploit internal network connections and pathways to spread rapidly and cause maximum disruption,  organizations should also employ security best-practices to block or limit the impact of ransomware attacks  on their critical systems. These best practices have not changed significantly since 2017’s massive WannaCry and NotPetya attacks, so organizations would be wise to check and ensure they are employing them on their own networks. Protecting critical infrastructure against cyber-attacks is a complex challenge because of the sheer diversity of systems in each sector.  However, the established security measures we’ve outlined here are extremely effective in protecting these vital systems – and in turn, protecting all of us. Schedule a demo Related Articles 2025 in review: What innovations and milestones defined AlgoSec’s transformative year in 2025? AlgoSec Reviews Mar 19, 2023 · 2 min read Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • AlgoSec | Introduction to Cloud Risk Management for Enterprises

    Every business needs to manage risks. If not, they won’t be around for long. The same is true in cloud computing. As more companies move... Cloud Security Introduction to Cloud Risk Management for Enterprises Rony Moshkovich 2 min read Rony Moshkovich Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 11/24/22 Published Every business needs to manage risks. If not, they won’t be around for long. The same is true in cloud computing. As more companies move their resources to the cloud, they must ensure efficient risk management to achieve resilience, availability, and integrity. Yes, moving to the cloud offers more advantages than on-premise environments. But, enterprises must remain meticulous because they have too much to lose. For example, they must protect sensitive customer data and business resources and meet cloud security compliance requirements. The key to these – and more – lies in cloud risk management. That’s why in this guide, we’ll cover everything you need to know about managing enterprise risk in cloud computing, the challenges you should expect, and the best ways to navigate it. If you stick around, we’ll also discuss the skills cloud architects need for risk management. What is Cloud Risk Management and Why is it Important? In cloud computing, risk management refers to the process of identifying, assessing, prioritizing, and mitigating the risks associated with cloud computing environments. It’s a process of being proactive rather than reactive. You want to identify and prevent an unexpected or dangerous event that can damage your systems before it happens. Most people will be familiar with Enterprise Risk Management (ERM). Organizations use ERM to prepare for and minimize risks to their finances, operations, and goals. The same concept applies to cloud computing. Cyber threats have grown so much in recent years that your organization is almost always a target. For example, a recent report revealed 80 percent of organizations experienced a cloud security incident in the past year. While cloud-based information systems have many security advantages, they may still be exposed to threats. Unfortunately, these threats are often catastrophic to your business operations. This is why risk management in cloud environments is critical. Through effective cloud risk management strategies, you can reduce the likelihood or impact of risks arising from cloud services. Types of Risks Managing risks is a shared responsibility between the cloud provider and the customer – you. While the provider ensures secure infrastructure, you need to secure your data and applications within that infrastructure. Some types of risks organizations face in cloud environments are: Data breaches are caused by unauthorized access to sensitive data and information stored in the cloud. Service disruptions caused by redundant servers can affect the availability of services to users. Non-compliance to regulatory requirements like CIS compliance , HIPAA, and GDPR. Insider threats like malicious insiders, cloud misconfigurations, and negligence. External threats like account hijacking and insecure APIs. But risk assessment and management aren’t always straightforward. You will face certain challenges – and we’ll discuss them below: Challenges Facing Enterprise Cloud Risk Management Most organizations often face difficulties when managing cloud or third-party/vendor risks. These risks are particularly associated with the challenges that cloud deployments and usage cause. Understanding the cloud security challenges sheds more light on your organization’s potential risks. The Complexity of Cloud Environments Cloud security is complex, particularly for enterprises. For example, many organisations leverage multi-cloud providers. They may also have hybrid environments by combining on-premise systems and private clouds with multiple public cloud providers. You’ll admit this poses more complexities, especially when managing configurations, security controls, and integrations across different platforms. Unfortunately, this means organizations leveraging the cloud will likely become dependent on cloud services. So, what happens when these services become unavailable? Your organisation may be unable to operate, or your customers can’t access your services. Thus, there’s a need to manage this continuity and lock-in risks. Lack of Visibility and Control Cloud consumers have limited visibility and control. First, moving resources to the public cloud means you’ll lose many controls you had on-premises. Cloud service providers don’t grant access to shared infrastructure. Plus, your traditional monitoring infrastructure may not work in the cloud. So, you can no longer deploy network taps or intrusion prevention systems (IPS) to monitor and filter traffic in real-time. And if you cannot directly access the data packets moving within the cloud or the information contained within them, you lack visibility or control. Lastly, cloud service providers may provide logs of cloud workloads. But this is far from the real deal. Alerts are never really enough. They’re not enough for investigations, identifying the root cause of an issue, and remediating it. Investigating, in this case, requires access to data packets, and cloud providers don’t give you that level of data. Compliance and Regulatory Requirements It can be quite challenging to comply with regulatory requirements. For instance, there are blind spots when traffic moves between public clouds or between public clouds and on-premises infrastructures. You can’t monitor and respond to threats like man-in-the-middle attacks. This means if you don’t always know where your data is, you risk violating compliance regulations. With laws like GDPR, CCPA, and other privacy regulations, managing cloud data security and privacy risks has never been more critical. Understanding Existing Systems and Processes Part of cloud risk management is understanding your existing systems and processes and how they work. Understanding the requirements is essential for any service migration, whether it is to the cloud or not. This must be taken into consideration when evaluating the risk of cloud services. How can you evaluate a cloud service for requirements you don’t know? Evolving Risks Organizations struggle to have efficient cloud risk management during deployment and usage because of evolving risks. Organizations often develop extensive risk assessment questionnaires based on audit checklists, only to discover that the results are virtually impossible to assess. While checklists might be useful in your risk assessment process, you shouldn’t rely on them. Pillars of Effective Cloud Risk Management – Actionable Processes Here’s how efficient risk management in cloud environments looks like: Risk Assessment and Analysis The first stage of every risk management – whether in cloud computing or financial settings – is identifying the potential risks. You want to answer questions like, what types of risks do we face? For example, are they data breaches? Unauthorized access to sensitive data? Or are they service disruptions in the cloud? The next step is analysis. Here, you evaluate the likelihood of the risk happening and the impact it can have on your organization. This lets you prioritize risks and know which ones have the most impact. For instance, what consequences will a data breach have on the confidentiality and integrity of the information stored in the cloud? Security Controls and Safeguards to Mitigate Risks Once risks are identified, it’s time to implement the right risk mitigation strategies and controls. The cloud provider will typically offer security controls you can select or configure. However, you can consider alternative or additional security measures that meet your specific needs. Some security controls and mitigation strategies that you can implement include: Encrypting data at rest and in transit to protect it from unauthorized access. For example, you could encrypt algorithms and implement secure key management practices that protect the information in the cloud while it’s being transmitted. Implementing accessing control and authentication measures like multi-factor authentication (MFA), role-based access control (RBAC), and privileged access management (PAM). These mechanisms ensure that only authorized users can access resources and data stored in the cloud. Network security and segmentation: Measures like firewalls, intrusion detection/intrusion prevention systems (IDS/IPS), and virtual private networks (VPN) will help secure network communications and detect/prevent malicious actors. On the other hand, network segmentation mechanisms help you set strict rules on the services permitted between accessible zones or isolated segments. Regulatory Compliance and Data Governance Due to the frequency and complexity of cyber threats, authorities in various industries are releasing and updating recommendations for cloud computing. These requirements outline best practices that companies must adhere to avoid and respond to cyber-attacks. This makes regulatory compliance an essential part of identifying and mitigating risks. It’s important to first understand the relevant regulations, such as PCI DSS, ISO 27001, GDPR, CCPA, and HIPAA. Then, understand each one’s requirements. For example, what are your obligations for security controls, breach notifications, and data privacy? Part of ensuring regulatory compliance in your cloud risk management effort is assessing the cloud provider’s capabilities. Do they meet the industry compliance requirements? What are their previous security records? Have you assessed their compliance documentation, audit reports, and data protection practices? Lastly, it’s important to implement data governance policies that prescribe how data is stored, handled, classified, accessed, and protected in the cloud. Continuous Monitoring and Threat Intelligence Cloud risks are constantly evolving. This could be due to technological advancements, revised compliance regulations and frameworks, new cyber-treats, insider threats like misconfigurations, and expanding cloud service models like Infrastructure-as-a-Service (IaaS). What does this mean for cloud computing customers like you? There’s an urgent need to conduct regular security monitoring and threat intelligence to address emerging risks proactively. It has to be an ongoing process of performing vulnerability scans of your cloud infrastructure. This includes log management, periodic security assessments, patch management, user activity monitoring, and regular penetration testing exercises. Incident Response and Business Continuity Ultimately, there’s still a chance your organization will face cyber incidents. Part of cloud risk management is implementing cyber incident response plans (CIRP) that help contain threats. Whether these incidents are low-level risks that were not prioritized or high-impact risks you missed, an incident response plan will ensure business continuity. It’s also important to gather evidence through digital forensics and analyze system artifacts after incidents. Backup and Recovery Implementing data backup and disaster recovery into your risk management ensures you minimize the impact of data loss or service disruptions. For example, backing up data and systems regularly is important. Some cloud services may offer redundant storage and versioning features, which can be valuable when your data is corrupted or accidentally deleted. Additionally, it’s necessary to document backup and recovery procedures to ensure consistency and guide architects. Best Practices for Effective Cloud Risk Management Achieving cloud risk management involves combining the risk management processes above, setting internal controls, and corporate governance. Here are some best practices for effective cloud risk management: 1. Careful Selection of Your Cloud Service Provider (CSP) Carefully select a reliable cloud service provider (CSP). You can do this by evaluating factors like contract clarity, ethics, legal liability, viability, security, compliance, availability, and business resilience. Note that it’s important to assess if the CSP relies on other service providers and adjust accordingly. 2. Establishing a Cloud Risk Management Framework Consider implementing cloud risk management frameworks for a structured approach to identifying, assessing, and mitigating risks. Some notable frameworks include: National Institute of Standards and Technology (NIST) Cloud Computing Risk Management Framework (CC RMF) ISO/IEC 27017 Cloud Security Alliance (CSA) Cloud Controls Matrix (CCM) Cloud Audit and Compliance (CAC) Criteria Center for Internet Security (CIS) Controls for Cloud, etc. 3. Collaboration and Communication with Stakeholders You should always inform all stakeholders about potential risks, their impact, and incident response plans. A collaborative effort can improve risk assessment and awareness, help your organization leverage collective expertise, and facilitates effective decision-making against identified risks. 4. Implement Technical Safeguards Deploying technical safeguards like cloud access security broker (CASB) in cloud environments can enhance security and protect against risks. CASB can be implemented in the cloud or on-premise and enforces security policies for users accessing cloud-based resources. 5. Set Controls Based on Risk Treatment After identifying risks and determining your risk appetite, it’s important to implement dedicated measures to mitigate them. Develop robust data classification and lifecycle mechanisms and integrate processes that outline data protection, erasure, and hosting into your service-level agreements (SLA). 6. Employee Training and Awareness Programs What’s cloud risk management without training personnel? At the crux of risk management is identifying potential threats and taking steps to prevent them. Insider threats and the human factor contribute significantly to threats today. So, training employees on what to do to prevent risks during and after incidents can make a difference. 7. Adopt an Optimized Cloud Service Model Choose a cloud service model that suits your business, minimizes risks, and optimizes your cloud investment cost. 8. Continuous Improvement and Adaptation to Emerging Threats As a rule of thumb, you should always look to stay ahead of the curve. Conduct regular security assessments and audits to improve cloud security posture and adapt to emerging threats. Skills Needed for Cloud Architects in Risk Management Implementing effective cloud risk management requires having skilled architects on board. Through their in-depth understanding of cloud platforms, services, and technologies, these professionals can help organizations navigate complex cloud environments and design appropriate risk mitigation strategies. Cloud Security Expertise: This involves an understanding of cloud-specific security challenges and a solid knowledge of the cloud provider’s security capabilities. Risk Assessment and Management Skills: Cloud architects must be proficient in risk assessment processes, methodologies, and frameworks. It is also essential to prioritize risks based on their perceived impact and implement appropriate controls. Compliance and Regulatory Knowledge: Not complying with regulatory requirements may cause similar damage as poor risk management. Due to significant legal fees or fines, cloud architects must understand relevant industry regulations and compliance standards. They must also incorporate these requirements into the company’s risk management strategies. Incident Response and Incident Handling: Risk management aims to reduce the likelihood of incidents or their impact. It doesn’t mean completely eradicating incidents. So, when these incidents eventually happen, you want cloud security architects who can respond adequately and implement best practices in cloud environments. Conclusion The importance of prioritizing risk management in cloud environments cannot be overstated. It allows you to proactively identify risks, assess, prioritize, and mitigate them. This enhances the reliability and resilience of your cloud systems, promotes business continuity, optimizes resource utilization, and helps you manage compliance. Do you want to automate your cloud risk assessment and management? Prevasio is the ideal option for identifying risks and achieving security compliance. Request a demo now to see how Prevasio’s agentless platform can protect your valuable assets and streamline your multi-cloud environments. Schedule a demo Related Articles 2025 in review: What innovations and milestones defined AlgoSec’s transformative year in 2025? AlgoSec Reviews Mar 19, 2023 · 2 min read Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • AlgoSec | Building a Blueprint for a Successful Micro-segmentation Implementation

    Avishai Wool, CTO and co-founder of AlgoSec, looks at how organizations can implement and manage SDN-enabled micro-segmentation... Micro-segmentation Building a Blueprint for a Successful Micro-segmentation Implementation Prof. Avishai Wool 2 min read Prof. Avishai Wool Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 6/22/20 Published Avishai Wool, CTO and co-founder of AlgoSec, looks at how organizations can implement and manage SDN-enabled micro-segmentation strategies Micro-segmentation is regarded as one of the most effective methods to reduce an organization’s attack surface, and a lack of it has often been cited as a contributing factor in some of the largest data breaches and ransomware attacks. One of the key reasons why enterprises have been slow to embrace it is because it can be complex and costly to implement – especially in traditional on-premise networks and data centers. In these, creating internal zones usually means installing extra firewalls, changing routing, and even adding cabling to police the traffic flows between zones, and having to manage the additional filtering policies manually. However, as many organizations are moving to virtualized data centers using Software-Defined Networking (SDN), some of these cost and complexity barriers are lifted. In SDN-based data centers the networking fabric has built-in filtering capabilities, making internal network segmentation much more accessible without having to add new hardware. SDN’s flexibility enables advanced, granular zoning: In principle, data center networks can be divided into hundreds, or even thousands, of microsegments. This offers levels of security that would previously have been impossible – or at least prohibitively expensive – to implement in traditional data centers. However, capitalizing on the potential of micro-segmentation in virtualized data centers does not eliminate all the challenges. It still requires the organization to deploy a filtering policy that the micro-segmented fabric will enforce, and writing this a policy is the first, and largest, hurdle that must be cleared. The requirements from a micro-segmentation policy A correct micro-segmentation filtering policy has three high-level requirements: It allows all business traffic – The last thing you want is to write a micro-segmented policy and have it block necessary business communication, causing applications to stop functioning. It allows nothing else – By default, all other traffic should be denied. It is future-proof – ‘More of the same’ changes in the network environment shouldn’t break rules. If you write your policies too narrowly, when something in the network changes, such as a new server or application, something will stop working. Write with scalability in mind. A micro-segmentation blueprint Now that you know what you are aiming for, how can you actually achieve it? First of all, your organization needs to know what your traffic flows are – what is the traffic that should be allowed. To get this information, you can perform a ‘discovery’ process. Only once you have this information, can you then establish where to place the borders between the microsegments in the data center and how to devise and manage the security policies for each of the segments in their network environment. I welcome you to download AlgoSec’s new eBook , where we explain in detail how to implement and manage micro-segmentation. AlgoSec Enables Micro-segmentation The AlgoSec Security Management Suite (ASMS) employs the power of automation to make it easy to define and enforce your micro-segmentation strategy inside the data center, ensure that it does not block critical business services, and meet compliance requirements. AlgoSec supports micro-segmentation by: Providing application discovery based on netflow information Identifying unprotected network flows that do not cross any firewall and are not filtered for an application Automatically identifying changes that will violate the micro-segmentation strategy Automatically implementing network security changes Automatically validating changes The bottom line is that implementing an effective network micro-segmentation strategy is now possible. It requires careful planning and implementation, but when carried out following a proper blueprint and with the automation capabilities of the AlgoSec Security Management Suite, it provides you with stronger security without sacrificing any business agility. Find out more about how micro-segmentation can help you boost your security posture, or request your personal demo . Schedule a demo Related Articles 2025 in review: What innovations and milestones defined AlgoSec’s transformative year in 2025? AlgoSec Reviews Mar 19, 2023 · 2 min read Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • AlgoSec | Navigating the Cybersecurity Horizon in 2024

    The persistence of sophisticated ransomware In 2023, organizations faced a surge in ransomware attacks, prompting a reevaluation of... Network Segmentation Navigating the Cybersecurity Horizon in 2024 Prof. Avishai Wool 2 min read Prof. Avishai Wool Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 12/17/23 Published The persistence of sophisticated ransomware In 2023, organizations faced a surge in ransomware attacks, prompting a reevaluation of cybersecurity readiness. The focus on high-value assets and critical infrastructure indicated an escalating threat landscape, demanding stronger preemptive measures. This trend is expected to continue in 2024 as cybercriminals exploit vulnerabilities. Beyond relying on technology alone, organizations must adopt strategies like Zero Trust and Micro-segmentation for comprehensive preparedness, fortifying data security. A resolute and practical response is crucial to safeguard critical assets in the evolving cybersecurity landscape. DevSecOps Integration DevSecOps is set to become a cornerstone in software development, integrating security practices proactively. As Infrastructure as a Service (IaaS) popularity rises, customizing security settings becomes challenging, necessitating a shift from network perimeter reliance. Anticipating an “Always-on Security” approach like Infrastructure as Code (IaC), companies can implement policy-based guardrails in the CI/CD pipeline. If risks violating the guardrails are identified, automation should halt for human review. Cloud-Native Application Protection Platforms (CNAPP): The CNAPP market has advanced from basic Cloud Security Posture Management (CSPM) to include varied vulnerability and malware scans, along with crucial behavioral analytics for cloud assets like containers. However, few vendors emphasize deep analysis of Infrastructure as a Service (IaaS) networking controls in risk and compliance reporting. A more complete CNAPP platform should also provide comprehensive analytics of cloud applications’ connectivity exposure. Application-centric approach to network security will supersede basic NSPM Prepare for the shift from NSPM to an application-centric security approach, driven by advanced technologies, to accelerate in 2024. Organizations, grappling with downsizing and staff shortages, will strategically adopt this holistic approach to improve efficiency in the security operations team. Emphasizing knowledge retention and automated change processes will become crucial to maintain security with agility. AI-based enhancements to security processes Generative AI, as heralded by Chat-GPT and its ilk, has made great strides in 2023, and has demonstrated that the technology has a lot of potential. I think that in 2024 we will see many more use cases in which this potential goes from simply being “cool” to a more mature technology that is brought to market to bring real value to owners of security processes. Any use case that involves analyzing, summarizing, or generalizing text, can potentially benefit from a generative AI assist. The trick will be to do so in ways that save human time, without introducing factual hallucinations. Schedule a demo Related Articles 2025 in review: What innovations and milestones defined AlgoSec’s transformative year in 2025? AlgoSec Reviews Mar 19, 2023 · 2 min read Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • AlgoSec | Top Two Cloud Security Concepts You Won’t Want to Overlook

    Organizations transitioning to the cloud require robust security concepts to protect their most critical assets, including business... Cloud Security Top Two Cloud Security Concepts You Won’t Want to Overlook Rony Moshkovich 2 min read Rony Moshkovich Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 11/24/22 Published Organizations transitioning to the cloud require robust security concepts to protect their most critical assets, including business applications and sensitive data. Rony Moshkovitch, Prevasio’s co-founder, explains these concepts and why reinforcing a DevSecOps culture would help organizations strike the right balance between security and agility. In the post-COVID era, enterprise cloud adoption has grown rapidly. Per a 2022 security survey , over 98% of organizations use some form of cloud-based infrastructure. But 27% have also experienced a cloud security incident in the previous 12 months. So, what can organizations do to protect their critical business applications and sensitive data in the cloud? Why Consider Paved Road, Guardrails, and Least Privilege Access for Cloud Security It is in the organization’s best interest to allow developers to expedite the lifecycle of an application. At the same time, it’s the security teams’ job to facilitate this process in tandem with the developers to help them deliver a more secure application on time. As organizations migrate their applications and workloads to a multi-cloud platform, it’s incumbent to use a Shift left approach to DevSecOps. This enables security teams to build tools, and develop best practices and guidelines that enable the DevOps teams to effectively own the security process during the application development stage without spending time responding to risk and compliance violations issued by the security teams. This is where Paved Road, Guardrails and Least Privilege could add value to your DevSecOps. Concept 1: The Paved Road + Guardrails Approach Suppose your security team builds numerous tools, establishes best practices, and provides expert guidance. These resources enable your developers to use the cloud safely and protect all enterprise assets and data without spending all their time or energy on these tasks. They can achieve these objectives because the security team has built a “paved road” with strong “guardrails” for the entire organization to follow and adopt. By following and implementing good practices, such as building an asset inventory, creating safe templates, and conducting risk analyses for each cloud and cloud service, the security team enables developers to execute their own tasks quickly and safely. Security staff will implement strong controls that no one can violate or bypass. They will also clearly define a controlled exception process, so every exception is clearly tracked and accountability is always maintained. Over time, your organization may work with more cloud vendors and use more cloud services. In this expanding cloud landscape, the paved road and guardrails will allow users to do their jobs effectively in a security-controlled manner because security is already “baked in” to everything they work with. Moreover, they will be prevented from doing anything that may increase the organization’s risk of breaches, thus keeping you safe from the bad guys. How Paved Road Security and Guardrails Can Be Applied Successfully Example 1: Set Baked-in Security Controls Remember to bake security into reusable Terraform templates or AWS CloudFormation modules of paved roads. You may apply this tactic to provision new infrastructure, create new storage buckets, or adopt new cloud services. When you create a paved road and implement appropriate guardrails, all your golden modules and templates are already secure from the outset – safeguarding your assets and preventing undesirable security events. Example 2: Introducing Security Standardizations When creating resource functions with built-in security standards, developers should adhere to these standards to confidently configure required resources without introducing security issues into the cloud ecosystem. Example 3: Automating Security with Infrastructure as Code (IaC) IaC is a way to manage and provision new infrastructure by coding specifications instead of following manual processes. To create a paved road for IaC, the security team can introduce tagging to provision and track cloud resources. They can also incorporate strong security guardrails into the development environment to secure the new infrastructure right from the outset. Concept 2: The Principle of Least Privileged Access (PoLP) The Principle of Least Privilege Access (PoLP) is often synonymous with Zero Trust. PoLP is about ensuring that a user can only access the resources they need to complete a required task. The idea is to prevent the misuse of critical systems and data and reduce the attack surface to decrease the probability of breaches. How Can PoLP Be Applied Successfully Example 1: Ring-fencing critical assets This is the process of isolating specific “crown jewel” applications so that even if an attacker could make it into your environment, they would be unable to reach that data or application. As few people as possible would be given credentials that allow access, therefore following least privilege access rules. Crown jewel applications could be anything from where sensitive customer data is stored, to business-critical systems and processes. Example 2: Establishing Role Based Access Control (RABC) Based on the role that they hold at the company, RBAC or role-based access control allows specific access to certain data or applications, or parts of the network. This goes hand in hand with the principle of least privilege, and means that if credentials are stolen, the attackers are limited to what access the employee in question holds. As this is based on users, you could isolate privileged user sessions specifically to keep them with an extra layer of protection. Only if an administrator account or one with wide access privilege is stolen, would the business be in real trouble. Example 3: Isolate applications, tiers, users, or data This task is usually done with micro-segmentation, where specific applications, users, data, or any other element of the business is protected from an attack with internal, next-gen firewalls. Risk is reduced in a similar way to the examples above, where the requisite access needed is provided using the principle of least privilege to allow access to only those who need it, and no one else. In some situations, you might need to allow elevated privileges for a short period of time, for example during an emergency. Watch out for privilege creep, where users gain more access over time without any corrective oversight. Conclusion and Next Steps Paved Road, Guardrails and PoLP concepts are all essential for a strong cloud security posture. By adopting these concepts, your organization can move to the next stage of cloud security maturity and create a culture of security-minded responsibility at every level of the enterprise. The Prevasio cloud security platform allows you to apply these concepts across your entire cloud estate while securing your most critical applications. Schedule a demo Related Articles 2025 in review: What innovations and milestones defined AlgoSec’s transformative year in 2025? AlgoSec Reviews Mar 19, 2023 · 2 min read Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • AlgoSec | Cloud security study reveals: over 50% of system failures are caused by human error and mismanagement

    The past few years have witnessed a rapid surge in the use of SaaS applications across various industries. But with this growth comes a... Hybrid Cloud Security Management Cloud security study reveals: over 50% of system failures are caused by human error and mismanagement Malynnda Littky-Porath 2 min read Malynnda Littky-Porath Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 6/20/23 Published The past few years have witnessed a rapid surge in the use of SaaS applications across various industries. But with this growth comes a significant challenge: managing security and assessing risk in application connectivity. In this blog, I’ll explore the fascinating insights from a recent study conducted by the Cloud Security Alliance (CSA). The study delves into the complexities of managing security and assessing the risk of application connectivity in the rapidly growing world of SaaS applications and cloud environments. With responses from 1,551 IT and security professionals from organizations of all sizes and from all corners of the globe, this study provides valuable insights into the challenges of application security in cloud environments and how to best manage them. Insight # 1 – Human error is the leading cause of application outages With more than half of these outages linked to manual processes and the increasing complexity of the systems themselves, businesses are losing productivity, revenue, and even reputation due to downtime. In many cases, the root cause of these outages is traced back to configuration errors, software bugs, or human mistakes during deployments or maintenance activities. To combat these issues, investment in automation and machine learning technologies can mitigate the risk of human error and ensure the reliability and stability of their applications. Insight # 2 – 75% of organizations experienced application outages lasting an hour or more. The financial impact of outages has been significant, with an estimated cost of $300,000 or more per instance. These costs include lost productivity, revenue, and potential customer churn. While human error is the major contributor to downtime, outages are often caused by a combination of additional factors, including hardware or software failure and cyber-attacks. Comprehensive disaster recovery plans, backup systems, and application performance monitoring tools are necessary to minimize outages and ensure business continuity. Insight # 3 – A lack of visibility and compliance are the primary constraints to rolling out new applications . Visibility is essential to understanding how applications are used, where they are deployed, and how they integrate with other systems. Compliance gaps, on the other hand, can pose significant risks, resulting in issues such as data breaches, regulatory fines, or reputational damage. To ensure successful application rollout, organizations must have a clear view of their application environment and ensure compliance with relevant standards and regulations. Insight # 4 – The shift to the DevOps methodology has led to a shift-left movement where security is integrated into the application development process . Traditionally, application security teams have been responsible for securing applications in the public cloud. However, DevOps teams are becoming more involved in the security of applications in the public cloud. DevOps teams are now responsible for ensuring that applications are designed with security in mind, and they work with the application security teams to ensure that the necessary controls are in place. Involving the DevOps teams in the security process can reduce the risk of security breaches and ensure that security is integrated throughout the application lifecycle. Insight # 5 – Organizations are targeting unauthorized access to applications in the public cloud . Organizations can protect their applications by implementing strong authentication mechanisms, access controls, and encryption to protect sensitive data. Using the principle of least privilege can limit application access to only authorized personnel. cloud infrastructure is secure and that vulnerabilities are regularly identified and addressed. Organizations must review their security requirements, monitor the application environment, and regularly update their security controls to protect their data and applications in the public cloud. Insight # 6 – A rapidly evolving technology landscape has created skills gaps and staffing issues Specialized skills are not always readily available within organizations, which can result in a shortage of qualified personnel. This can overburden teams, resulting in burnout and increased staff turnover. Staffing shortages can also lead to knowledge silos, where critical skills and knowledge are concentrated in a few key individuals, leaving the rest of the team vulnerable to knowledge gaps. Organizations must invest in training and development programs to ensure that their teams have the skills and knowledge necessary to succeed in their roles. Successful cloud migrations require a comprehensive knowledge of cloud security controls and how they interconnect and collaborate with on-premise security systems. To make this happen, organizations need complete visibility across both cloud and on-premise environments, and must automate the network security management processes. To sum up, the rapidly evolving threat environment demands new ways to enhance security. Proactive risk detection, powerful automation capabilities, and enhanced visibility in the cloud and outside of it are just a few ways to strengthen your security posture. AlgoSec can do all that, and more, to help you stay ahead of emerging threats and protect your critical assets.. Even better, our solution is ideal for organizations that may lack in-house expertise and resources, complementing the existing security measures and helping to keep you one step ahead of attackers. Don’t miss out on the full insights and recommendations from the study. Click here to access the complete findings. Schedule a demo Related Articles 2025 in review: What innovations and milestones defined AlgoSec’s transformative year in 2025? AlgoSec Reviews Mar 19, 2023 · 2 min read Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • AlgoSec | What is a Cloud Security Assessment? (and How to Perform One)

    Compared to on-premises data storage, cloud computing comes with a lot of benefits. On-demand access to company data, flexibility, and... Cloud Security What is a Cloud Security Assessment? (and How to Perform One) Rony Moshkovich 2 min read Rony Moshkovich Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 7/12/23 Published Compared to on-premises data storage, cloud computing comes with a lot of benefits. On-demand access to company data, flexibility, and fast collaboration are just a few. But along with these advantages come increased security risks. To manage them, companies should invest in regular cloud security assessments. What Is a Cloud Security Risk Assessment? A cloud security assessment evaluates the potential vulnerabilities of an organization’s cloud environment. These assessments are essential to mitigate risks and ensure the continued security of cloud-based systems. By looking at cloud applications, services, and data, companies can better understand the biggest threats to their cloud environment. By managing these threats, businesses can avoid costly workflow interruptions. A security assessment can be done by an organization’s internal security team or by an outside security expert. This can happen one time only, or it can be done regularly as part of an organization’s overall cybersecurity plan. How Do Cloud Security Risk Assessments Protect Your Business? Cloud-based systems and services are an essential part of most businesses nowadays. Unfortunately, what makes them convenient is also what makes them vulnerable to security threats. A cloud security risk assessment helps organizations find out what might go wrong and prevent it from happening. It also helps with prioritizing and managing the most serious issues before they become full-on data breaches. One way assessments do this is by identifying misconfigurations. Cloud misconfigurations are behind many security breaches. They result from errors introduced by network engineers working on early cloud systems. A cloud security assessment earmarks these and other outmoded security features for repair. What’s more, cloud security assessments identify third-party risks from APIs or plugins. When your company identifies risks and manages permissions, you keep your cloud environment safe. By mitigating third-party risks, you can still benefit from outside vendors. Of course, none of this information is valuable without employee education. Employees need to know about risks and how to stop them; this is the best way to reduce the number of security incidents caused by human error or carelessness. To put it simply, a cloud security assessment helps your business run smoothly. When you know the risks your company faces and can manage them, you reduce the impact of security-related incidents. That means you can recover faster and get back to work sooner. 7 Benefits of Cloud Security Risk Assessments Cloud security risk assessments provide lots of benefits. They can help you: Improve cloud security posture . Understanding the ins and outs of a cloud-based system helps organizations plan better. For example, they can modify their security budget or improve their risk management strategy based on the results. Uncover security vulnerabilities . Cloud security assessments pinpoint weak spots. This includes misconfigurations , access control issues, and missing multi-factor authentications (MFAs). Once identified, organizations can fix the issues and avoid security breaches. Develop a more secure multi-cloud environment . Most organizations use multiple cloud platforms. Usually, this involves private or public clouds or a combination of both. This is ideal from a financial and agility perspective. But every extra layer in a cloud environment introduces potential risks. A cloud security assessment is essential in identifying these cross-cloud threats. Achieve compliance with industry standards and regulatory bodies . Ensuring compliance with GDPR, PCI-DSS, and HIPAA helps protect organizations from millions of dollars of potential fines . Manage your reputation. A sensitive data leak or other cloud security incident damages a company’s reputation. Think of companies like Target, Facebook, and LinkedIn. All have faced backlash after security breaches . Conducting cloud security assessments shows that organizations value customer and stakeholder privacy. Detect past threats . A cloud security assessment looks for things that might be wrong with the way your cloud system is set up. It can also help you find out if there have been any past security problems. By doing this, you can see if someone has tried to tamper with the security of your cloud system in the past, which could signal a bigger problem. Increase efficiency . Cloud security assessments show you which security measures are working and which aren’t. By getting rid of security tools that aren’t needed, employees have more time to work on other tasks. Cost savings . The most compelling reason to run a cloud security assessment is that it helps save money. Cost savings come from eliminating unnecessary security measures and from missed work time due to breaches. What Risks Do Cloud Security Assessments Look For? Cloud security assessments focus on six areas to identify security vulnerabilities in your cloud infrastructure: overall security posture, access control and management, incident management, data protection, network security, and risk management and compliance. Some specific risks cloud security assessments look for include: Cloud Misconfigurations Misconfigurations are one of the most common threats to overall security posture. In fact, McAfee’s enterprise security study found that enterprises experience 3,500 security incidents per month because of misconfigurations. From improperly stored passwords to insecure automated backups, misconfiguration issues are everywhere. Because they’re so common, fixing this issue alone can reduce the risk of a security breach by up to 80%, according to Gartner . Access Control and Management Problems This assessment also highlights ineffective access control and management. One way it does this is by identifying excessive network permissions. Without the proper guardrails (like data segmentation) in place, an organization’s attack surface is greater. Plus, its data is at risk from internal and external threats. If an employee has too much access to a company’s network, they might accidentally delete or change important information. This could cause unintended system problems. Additionally, if hackers get access to the company’s network, they could easily steal important data. Cloud security assessments also look at credentials as part of user account management. A system that uses only static credentials for users or cloud workloads is a system at risk. Without multifactor authentication (MFA) in place, hackers can gain access to your system and expose your data. Improper Incident Management and Logging When it comes to incident management, a cloud security assessment can reveal insufficient or improper logging — problems that make detecting malicious activities more difficult. Left unchecked, the damage is more severe, making recovery more time-consuming and expensive. Insufficient Data and Network Security Data protection and network security go hand in hand. Without proper network controls in place (for example firewalls and intrusion detection), data in the cloud is vulnerable to attack. A cloud security assessment can identify gaps in both areas. Based on the results of a cloud security assessment, a company can make a risk management plan to help them react as quickly and effectively as possible in the event of an attack. The last aspect of cloud security the assessment looks at is compliance with industry standards. 7 Steps To Perform a Cloud Security Assessment The main components of cloud security assessments include: Identifying your cloud-based assets, discovering vulnerabilities through testing, generating recommendations, and retesting once the issues have been addressed. The steps to performing a cloud security assessment are as follows: Step One: Define the project Get a picture of your cloud environment. Look at your cloud service providers (CSPs), third-party apps, and current security tools. First, decide which parts of your system will be evaluated. Next, look at the type of data you’re handling or storing. Then consider the regulations your business must follow. Step Two: Identify potential threats Look at both internal and external threats to your cloud-based system. This could include endpoint security, misconfigurations, access control issues, data breaches, and more. Then figure out how likely each type of attack is. Finally, determine what impact each attack would have on your business operations. Step Three: Examine your current security system Look for vulnerabilities in your existing cloud security. In particular, pay attention to access controls, encryption, and network security. Step Four: Test Penetration testing, port scanners, and vulnerability scanners are used to find weaknesses in your cloud environment that were missed during the original risk assessment. Step Five: Analyze Look at the results and determine which weaknesses need immediate attention. Deal with the issues that will have the biggest impact on your business first. Then, focus on the issues most likely to occur. Finish by handling lower-priority threats. Step Six: Develop an action plan Come up with a time-bound remediation plan. This plan should spell out how your organization will deal with each security vulnerability. Assign roles and responsibilities as part of your incident response program. Depending on the results, this could include updating firewalls, monitoring traffic logs, and limiting access control. Step Seven: Maintain Cloud security assessments can be done as a one-off, but it’s much better to monitor your systems regularly. Frequent monitoring improves your organization’s threat intelligence. It also helps you identify and respond to new threats in real time. Getting Help With Your Cloud Security Assessment Cloud security assessment tools are used to identify vulnerabilities in a cloud infrastructure which could lead to data loss or compromise by attackers. As an agentless cloud security posture management (CSPM) tool , Prevasio helps identify and fix security threats across all your cloud assets in minutes. Our deep cloud scan checks for security weaknesses, malware, and compliance. This helps ensure that your company’s cloud environment is protected against potential risks. But any CSPM can do that . Prevasio is the only solution that provides container security dynamic behavior analysis. Our technology spots hidden backdoors in your container environments. It also identifies supply chain attack risks. Paired with our container security static analysis for vulnerabilities and malware, your containers will never be safer. Our CSPM works across multi-cloud, multi-accounts, cloud-native services , and cloud assets. Whether you’re using Microsoft Azure, S3 buckets in AWS, or Cosmos DB in GCP, Prevasio is the security system your company has been looking for. But we do more than identify security threats. We increase your team’s efficiency. How? By providing a prioritized list of cloud risks ranked according to CIS benchmarks. That means no more uncertainty about what needs to get done. Our easy-to-understand results help your team concentrate on the most important things. This saves time and money by reducing the need for extra administrative work. A Final Word on Cloud Security Assessments Performing regular cloud security assessments helps your business spot security issues before they become major problems. When you reinforce your security controls and define your incident response plan, you make your organization more efficient. Plus, you keep things going even when issues arise. Put together, these proactive measures can save you money. Sign up today and see how Prevasio can help your team ! FAQs About Cloud Security Assessments What are the four areas of cloud security? The four pillars of cloud security are data availability, data confidentiality, data integrity, and regulatory compliance. What is included in a security assessment? Cloud security assessments include: Identifying your cloud-based assets, discovering vulnerabilities through testing, generating recommendations, and retesting once the issues have been addressed. Schedule a demo Related Articles 2025 in review: What innovations and milestones defined AlgoSec’s transformative year in 2025? AlgoSec Reviews Mar 19, 2023 · 2 min read Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • AlgoSec | Intro to Kubernetes Security Best Practices

    With the rapid proliferation of cloud computing, lean deployment methods, such as containers, have become common practice. According to... Cloud Security Intro to Kubernetes Security Best Practices Rony Moshkovich 2 min read Rony Moshkovich Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 11/27/20 Published With the rapid proliferation of cloud computing, lean deployment methods, such as containers, have become common practice. According to CIO.com, 70% of global companies are expected to be running multiple apps simultaneously using a containerized framework, like Kubernetes in the next few years. But as Kubernetes’ use becomes more widespread, so do the vulnerabilities inherent to containerization. According to a 2019 Forbes article , Kubernetes had at least 7,000 identified vulnerabilities at the beginning of 2019 alone. Couple that with the fact that cyber-attacks involving containerization have increased a whopping 240% since 2018, and you’ll understand the value of security should your company use a solution like Kubernetes to handle its container orchestration. What Causes Kubernetes Security Blindspots? To understand how to best optimize your Kubernetes experience, it’s worthwhile to understand the basic ways security issues arise in a containerized framework. Images are the core building blocks of containerization; they are the executable process at the centre of your container. As a result, anything that exposes an image to a broader audience puts the container at risk of being hijacked. One of the primary ways this occurs is by using out-of-date software. Using old software gives malicious actors a small incongruence that they can exploit within the code. Another problem is poorly defined user access roles. If sensible changes aren’t made to an orchestration tool’s default settings, inappropriate parties may have access to alter the container’s core executable. Containerization gives you a way to manage a large number of processes easily and with increased adaptability. As a result, automation makes it impossible to keep your eyes on everything at once. Here are some best practices that can help you counter the wide range of vulnerabilities inherent to containerization and Kubernetes in general. Kubernetes Security Best Practices Given the architecture of the Kubernetes framework, security risks are a constant and evolving threat. Luckily, Google made Kubernetes an open-source application under the auspices of the Cloud Native Computing Foundation where solutions to new security issues are actively crowdsourced by the community. Regardless, there are a number of things that you can do during the build, deployment, and runtime phases to make your Kubernetes implementation more secure. Take care of your images Images are the heart of every container. Executable functions are essential, so images must be well-maintained and in good working order. Only use up-to-date images, scanning them regularly for security issues. As a rule of thumb, you should also avoid including unnecessary tools and functions in your image coding as they can inadvertently give hackers an access route. Ensure that your secrets remain secret The term “secrets” refers to any private information such as login credentials, tokens, or other sensitive data. While it’s not customary to keep sensitive data stored adjacent to the container’s image, the scenario has come up before. Keep secret data as far from the image as possible in order to increase security. Keep up-to-date with scans and security patches The community does a good job of patching Kubernetes when issues arise. If you don’t take the time to update both your OS and Kubernetes’ security, you give malware additional avenues of attack. Updates should be performed at least every nine months, if not more often. Due to the nature of how Kubernetes works, if you are using an outdated version, you could actively be spreading issues when the container is deployed elsewhere. Take advantage of customization to define user roles and access A container orchestration tool like Kubernetes is a complex web running thousands of processes across numerous machines. That means hundreds of end-users involved with the application. Take advantage of Kubernetes administrative functions to clearly define user roles, limiting full access for those who don’t need it. As they say, too many cooks spoil the broth. Keeping Kubernetes Simple and Safe Containers are an agile, lightweight framework for cloud computing, but manually deploying the correct containers to their destinations can quickly become overwhelming. An orchestration tool like Kubernetes is the perfect solution to managing your containerization, but the security risks inherent to this model can be restrictive. By keeping a few key practices in mind when implementing Kubernetes into your workflow, you can help to promote safety while streamlining your processes. To Sum It All Up Kubernetes has become the centrepiece of the cloud Native landscape and a notable advantage for organizations to rapidly manage and deploy their containerized business logic. But certain security best practices must be followed such as working with reliable docker images, properly defined resource quotas, network policies, work with namespaces for access control and authentication\authorization, and more. To learn more about Prevasio integration and security for K8s containers, contact us today. Schedule a demo Related Articles 2025 in review: What innovations and milestones defined AlgoSec’s transformative year in 2025? AlgoSec Reviews Mar 19, 2023 · 2 min read Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • AlgoSec | 14 Step Checklist for a Flawless Network Security Audit

    14 Step Checklist for a Flawless Network Security Audit If security policies aren’t periodically updated to meet modern threat demands,... Cyber Attacks & Incident Response 14 Step Checklist for a Flawless Network Security Audit Tsippi Dach 2 min read Tsippi Dach Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 12/20/23 Published 14 Step Checklist for a Flawless Network Security Audit If security policies aren’t periodically updated to meet modern threat demands, organizations risk introducing vulnerabilities into their IT security posture. Comprehensive audit reports help security leaders gain in-depth visibility into their organization’s cybersecurity strategy and assess the resilience of its network infrastructure . Network Security Audit Checklist: What Does Your IT Security Audit Need to Cover? Cybersecurity audits demand an extensive overview of the organization’s security posture and risk profile. It requires gathering and analyzing network data to identify security vulnerabilities, monitor access controls, and assess potential threats. It also includes an overview of operational security practices, penetration testing results, and incident response playbooks . Ultimately, comprehensive risk assessment data should guide the organization towards improving its security measures and preventing hackers from breaching critical data and assets. A complete network security audit should include provide in-depth visibility into the following: Security controls and their implementation. The availability of network devices and access points. High-impact security risks and their potential consequences. The effectiveness of information security management processes. Performance data on security systems and network assets like firewalls. What Do Network Security Audits Help You Achieve? Conducting in-depth security audits helps security leaders identify data breach risks and develop plans for managing those risks. Audit results play an incredibly important role in preventative risk management and in the remediation of cyberattacks. Organizations that regularly conduct these kinds of assessments are better equipped to address the security weaknesses that might arise when onboarding new users, adding new endpoints to the network, or installing new apps. Network audits and security assessments can also help you achieve other important goals as well, such as: Identifying network performance issues and addressing them to improve overall performance. Unlocking opportunities to leverage network assets and mobile devices more efficiently. Demonstrating compliance with regulatory frameworks like the NIST Cybersecurity Framework 1.1 , ISO 27001 and 27002 , and SOC 2 Type 2 . Present security performance information to core stakeholders to demonstrate the value of security policies and controls. Update system security processes to address new vulnerabilities and potential threats. Recommended Read: 20 Best Network Security Solutions + FAQs How to Perform a Network Security Audit The network audit process involves collecting data, analyzing it to identify potential threats, and using it to compile a formal audit report. Depending on the size and complexity of the organization, this audit may be performed by an individual network analyst, a third-party IT security audit specialist, or an entire team of internal security professionals. These are the steps that make up a typical network audit: 1. Plan for the audit and inform everyone involved The audit process will involve many different types of technical tasks. The specific steps you take will change depending on the complexity of your network and the specialist talent required to assess data security in different IT contexts. You will need to verify authentication protocols, operating system security, password policies, and more. It’s rare for an individual security auditor to have all the technical skills necessary to do this on every app, device, and platform an organization uses. In most cases, you’ll need to work with other employees, third-party service providers, and other stakeholders to obtain the data you need. 2. Document all procedures and processes associated with the audit Recording every process that takes place during the audit is crucial. When preparing your final report, you may want to go back and verify some of the processes that took place to ensure the fidelity and accuracy of your data. If methodological errors creep into your data, they can skew your final report’s findings and end up damaging your ability to secure sensitive data correctly. Documentation is especially important in network security audits because you are looking for systematic flaws in the way user accounts, network assets, and security systems interact with one another. These flaws may not reveal themselves without clear documentation. 3. Review standard operating procedures and how they are managed Protecting sensitive information and critical network assets from security threats takes more than sophisticated technology. It also requires strict adherence to security policies and best practices from human users. Security audits should verify that employees and third-party providers are observing security policies in their operating procedures, and provide evidence attesting to that fact. Reviewing the organization’s procedure management system should provide key insight into whether users are following procedures or not. If they are not, there is a high risk of shadow IT processes leading to phishing attacks and security breaches. This should be reported so that the security team can find ways to remediate these threats. 4. Assess the training logs and operations Human error is behind eight out of ten cyberattacks . All customer-facing employees should be trained to detect phishing and social engineering attacks, and internal staff should know how to prevent malware from infecting the network. Every employee should understand how their role contributes to the security profile of the organization as a whole. Verifying authentication processes, permissions, and password policy is also part of employee training. Every user account should be protected by a consistent policy that follows the latest guidelines for beating brute force and dictionary-based credential attacks. Data encryption policies should keep sensitive login credentials secure even if hackers successfully compromise network assets. 5. Confirm the security patches for network software are up-to-date Start by creating a list of every software application used on the network. This can be a long, time-consuming manual process, but there are automated vulnerability scanning solutions that can help you automate this step. You will have to investigate each item on the list and determine whether new security patches are installed in a reasonably tight time frame. Keep in mind that cybercriminals often exploit security patch releases by scanning for organizations that delay installing new patches. Patch release changelogs essentially broadcast known vulnerabilities directly to hackers, so exploiting late patch installations is a trivial task. 6. Confirm the penetration testing policy and process is sufficient Penetration testing is one of the best ways to identify vulnerabilities on a network. If your organization has invested in pentesting initiatives, you will need to review and confirm its policies as part of the network security audit process. If you haven’t yet invested in pentesting, you may wish to outline a potential path for incorporating it into your security processes here. You may wish to verify the size and scope of your pentesting processes at this point. Assess some of the vulnerabilities you have uncovered and determine whether the organization is investing the appropriate resources into pentesting, or whether other security initiatives should take precedence. 7. Identify gaps and misconfigurations in your firewall policies Your organization’s firewalls play an important role managing traffic between network assets. Firewall rules should not be static. They must be continuously updated to meet the needs of the organization as it changes and grows. These devices can enforce bring your own device (BYOD) mobile policies, prevent distributed denial of service (DDoS) attacks, and contribute to proper network segmentation. Manually configuring firewall policies can be costly and time-consuming. Consider using an automated change management platform like AlgoSec Firewall Analyzer to rapidly identify potential vulnerabilities in your firewall rules. Document any changes you make and include those updates in your report. 8. Ensure all sensitive and confidential data is stored securely Every organization has to store some form of sensitive or confidential data. A major goal of network security audits is making sure this data is kept separate from non-sensitive data and protected by a higher standard of security. This data includes individuals’ names, addresses, phone numbers, financial information, and government ID data. Access to sensitive data should be only allowed when critical for business purposes, and every action involving sensitive data should generate comprehensive logs. The data itself should be encrypted so that even if attackers successfully breach the database, they won’t be able to use the data itself. It may also be worth considering an enterprise data backup solution to provide a failsafe in the event of a disaster. 9. Encrypt the hard disks on any company laptops Portable devices like laptops should not generally hold sensitive data. However, many employees can’t work without processing some amount of sensitive data and storing it on the local hard drive. This is usually less than critical data, but it can still contribute to a cyberattack if it falls into the wrong hands. Encrypting laptop hard disks can help prevent that from happening. If all the data on the device is encrypted, then the organization can avoid triggering a crisis-level security incident every time an employee misplaces or loses a company device. 10. Check the security of your wireless networks Wireless network security is vital for preventing hackers from conducting phishing attacks against employees and on-premises customers. If your organization’s Wi-Fi network is not secured, hackers can spoof the network and trick users into giving up vital information without their knowledge. All modern Wi-Fi equipment supports multiple security protocols. Avoid WEP and WPA – these are old protocols with well-known security vulnerabilities – and make sure your networks are using WPA2. If the organization has equipment that does not support WPA2, you must upgrade the equipment. 11. Scan for and identify any unauthorized access points Your network may have access points that were never set up or approved by the organization. Cybercriminals can use these unauthorized access points to steal data without triggering exfiltration alerts. Additional Wi-Fi frequencies are a common culprit here – your private Wi-Fi network may be configured to use the 2.4 GHz band even though you have equipment that supports 5 GHz frequencies. If someone sets up an access point on the 5 GHz frequency, you can easily overlook it. Data breaches can occur over a wide variety of similar media. USB and Bluetooth-enabled devices have introduced malware into corporate networks in the past. Your security audit should cover as many of these communication channels as possible. 12. Review the event log monitoring process The best way to verify security events is by analyzing the logs generated by network assets as they respond to user interactions. These logs can tell you who accessed sensitive data and report where and when that access took place. Security analysts can connect log data across applications to contextualize security incidents and understand how they took place. The problem is that even a small organization with a simple network can generate an enormous volume of log data every day. Your security audit should investigate the event log monitoring process and look for opportunities to streamline it. You may consider implementing a security information and event management (SIEM) platform or improving your existing one. 13. Compile a comprehensive report Once you’ve gathered all the relevant data and included your insight into the organization’s security posture, you are ready to create your audit report. This report should compile all of your findings into a single well-organized document, with evidence supporting the claims you make and clear recommendations for improving operational security moving forward. Consider creating customized data visualizations to showcase how key performance metrics change over time. The way you choose to communicate data can have a major impact on the way it is received, potentially convincing key stakeholders to implement the changes you suggest. 14. Send the final report to appropriate stakeholders and other key parties. Once you’ve finished your network security audit, you are ready to send it to your organization’s leaders and any other stakeholders who have an interest in your findings. Be prepared to explain your recommendations and justify the methods you used to collect and analyze the organization’s security data. The more confident you are in the accuracy of your findings, the better-equipped you’ll be to present them if called upon. Schedule a demo Related Articles 2025 in review: What innovations and milestones defined AlgoSec’s transformative year in 2025? AlgoSec Reviews Mar 19, 2023 · 2 min read Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

bottom of page