top of page

Search results

615 results found with an empty search

  • Prevasio IaC security scanning | AlgoSec

    Discover seamless IaC security scanning with AlgoSec s Prevasio Protect your cloud infrastructure effortlessly Learn more now Enhance DevOps with automated IaC security scanning Leverage a single tool and policy for seamless collaborationbetween developers and security teams Schedule a demo Schedule a demo Watch a video End-to-end cloud configuration management Leverage Prevasio's advanced capabilities to identify misconfigurations within your IaC templates . We support a range of compliance frameworks covering technologies such as Terraform and Kubernetes. End-to-end network security control management Consolidate and streamline network security controls, including security groups and Azure firewalls, into one centralized system. Easily manage multiple clouds, accounts, regions, and VPC/VNETs, to save time and minimize misconfigurations by handling similar security controls through a single security policy. End-to-end container lifecycle management Utilize Prevasio's mitigation rules including domain, country, CVE and open port coverage, to perform container image scanning during the build phase to block the inclusion of non-compliant images in the registry. Ensure compliance with continuous scanning. Get the latest insights from the experts cloud-security-prevasio-iac-security-scanning Read blog Bridging the DevSecOps Application Connectivity Disconnect via IaC Read blog Mitigating cloud security risks through comprehensive automated solutions Read blog Schedule time and secure your cloud Schedule time and secure your cloud Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • AlgoSec | Don’t Neglect Runtime Container Security

    The Web application and service business loves containers, but they present a security challenge. Prevasio has the skills and experience... Cloud Security Don’t Neglect Runtime Container Security Rony Moshkovich 2 min read Rony Moshkovich Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 9/21/20 Published The Web application and service business loves containers, but they present a security challenge. Prevasio has the skills and experience to meet the challenge. Its runtime scanning technology and techniques will let you avoid the serious risks of vulnerable or compromised containers. The very thing that makes Docker containers convenient — their all-in-one, self-contained structure — makes them opaque to traditional security tests. Instances come and go as needed, sometimes deleting themselves within seconds. This scalable and transient nature isn’t amenable to the usual tools. Prevasio’s approach is specifically designed to analyze and test containers safely, finding any problems before they turn into security incidents. The container supply chain Container images put together code from many sources. They include original source or binary code, application libraries,language support, and configuration data. The developer puts them all together and delivers the resulting image. A complex container has a long supply chain,and many things can go wrong. Each item in the image could carry a risk. The container developer could use buggy or outdated components, or it could use them improperly. The files it imports could be compromised. A Docker image isn’t a straightforward collection of files, like a gzip file. An image may be derived from another image. Extracting all its files and parameters is possible but not straightforward. Vulnerabilities and malicious actions We can divide container risks into two categories: vulnerabilities and malicious code. Vulnerabilities A vulnerability unintentionally introduces risk. An outsider can exploit them to steal information or inflict damage. In a container, they can result from poor-quality or outdated components. The building process for a complex image is hard to keep up to date. There are many ways for something to go wrong. Vulnerability scanners don’t generally work on container images. They can’t find all the components. It’s necessary to check an active container to get adequate insight. This is risky if it’s done in a production environment. Container vulnerabilities include configuration weaknesses as well as problems in code. An image that uses a weak password or unnecessarily exposes administrative functions is open to attacks. Malicious code Malware in a container is more dangerous than vulnerabilities. It could intrude at any point in the supply chain. The developer might receive a compromised version of a runtime library. A few unscrupulous developers put backdoors into code that they ship. Sometimes they add backdoors for testing purposes and forget to remove them from the finished product. The only way to catch malware in a container is by its behavior. Monitoring the network and checking the file system for suspicious changes will discover misbehaving code. The Prevasio solution Security tools designed for statically loaded code aren’t very helpful with containers. Prevasio has created a new approach that analyzes containers without making any assumptions about their safety. It loads them into a sandboxed environment where they can’t do any harm and analyzes them.The analysis includes the following: Scanning of components for known vulnerabilities Automated pen-test attacks Behavioral analysis of running code Traffic analysis to discover suspicious data packets Machine learning to identify malicious binaries The analysis categorizes an image as benign,vulnerable, exploitable, dangerous, or harmful. The administrator looks at agraph to identify any problems visually, without digging through logs. They can tell at a glance whether an image is reasonably safe to run, needs to be sent back for fixes, or should be discarded on the spot. If you look at competing container security solutions, you’ll find that the key is runtime technology. Static analysis, vulnerability scans, and signature checking won’t get you enough protection by themselves. Prevasio gives you the most complete and effective checking of container images, helping you to avoid threats to your data and your business. Schedule a demo Related Articles 2025 in review: What innovations and milestones defined AlgoSec’s transformative year in 2025? AlgoSec Reviews Mar 19, 2023 · 2 min read Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • Multi-Cloud Security Network Policy and Configuration Management - AlgoSec

    Multi-Cloud Security Network Policy and Configuration Management Download PDF Schedule time with one of our experts Schedule time with one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Continue

  • Enterprise Guide To Cloud Security - AlgoSec

    Enterprise Guide To Cloud Security Download PDF Schedule time with one of our experts Schedule time with one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Continue

  • AlgoSec | Network Security Threats & Solutions for Cybersecurity Leaders

    Modern organizations face a wide and constantly changing range of network security threats, and security leaders must constantly update... Network Security Network Security Threats & Solutions for Cybersecurity Leaders Tsippi Dach 2 min read Tsippi Dach Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 2/11/24 Published Modern organizations face a wide and constantly changing range of network security threats, and security leaders must constantly update their security posture against them. As threat actors change their tactics, techniques, and procedures, exploit new vulnerabilities , and deploy new technologies to support their activities — it’s up to security teams to respond by equipping themselves with solutions that address the latest threats. The arms race between cybersecurity professionals and cybercriminals is ongoing. During the COVID-19 pandemic, high-profile ransomware attacks took the industry by storm. When enterprise security teams responded by implementing secure backup functionality and endpoint detection and response, cybercriminals shifted towards double extortion attacks. The cybercrime industry constantly invests in new capabilities to help hackers breach computer networks and gain access to sensitive data. Security professionals must familiarize themselves with the latest network security threats and deploy modern solutions that address them. What are the Biggest Network Security Threats? 1. Malware-based Cyberattacks Malware deserves a category of its own because so many high-profile attacks rely on malicious software to work. These include everything from the Colonial Pipeline Ransomware attack to historical events like Stuxnet . Broadly speaking, cyberattacks that rely on launching malicious software on computer systems are part of this category. There are many different types of malware-based cyberattacks, and they vary widely in scope and capability. Some examples include: Viruses. Malware that replicates itself by inserting its own code into other applications are called viruses. They can spread across devices and networks very quickly. Ransomware. This type of malware focuses on finding and encrypting critical data on the victim’s network and then demanding payment for the decryption key. Cybercriminals typically demand payment in the form of cryptocurrency, and have developed a sophisticated industrial ecosystem for conducting ransomware attacks. Spyware. This category includes malware variants designed to gather information on victims and send it to a third party without your consent. Sometimes cybercriminals do this as part of a more elaborate cyberattack. Other times it’s part of a corporate espionage plan. Some spyware variants collect sensitive information that cybercriminals value highly. Trojans. These are malicious applications disguised as legitimate applications. Hackers may hide malicious code inside legitimate software in order to trick users into becoming victims of the attack. Trojans are commonly hidden as an email attachment or free-to-download file that launches its malicious payload after being opened in the victim’s environment. Fileless Malware. This type of malware leverages legitimate tools native to the IT environment to launch an attack. This technique is also called “living off the land” because hackers can exploit applications and operating systems from inside, without having to download additional payloads and get them past firewalls. 2. Network-Based Attacks These are attacks that try to impact network assets or functionality, often through technical exploitations. Network-based attacks typically start at the edge of the network, where it sends and receives traffic to the public internet. Distributed Denial-of-Service (DDoS) Attacks. These attacks overwhelm network resources, leading to downtime and service unavailability, and in some cases, data loss . To launch DDoS attacks, cybercriminals must gain control over a large number of compromised devices and turn them into bots. Once thousands (or millions) of bots using unique IP addresses request server resources, the server breaks down and stops functioning. Man-in-the-Middle (MitM) Attacks: These attacks let cybercriminals eavesdrop on communications between two parties. In some cases, they can also alter the communications between both parties, allowing them to plan and execute more complex attacks. Many different types of man-in-the-middle attacks exist, including IP spoofing, DNS spoofing, SSL stripping, and others. 3. Social Engineering and Phishing These attacks are not necessarily technical exploits. They focus more on abusing the trust that human beings have in one another. Usually, they involve the attacker impersonating someone in order to convince the victim to give up sensitive data or grant access to a secure asset. Phishing Attacks. This is when hackers create fake messages telling victims to take some kind of action beneficial to the attacker. These deceptive messages can result in the theft of login credentials, credit card information, or more. Most major institutions are regularly impersonated by hackers running phishing scams, like the IRS . Social Engineering Attacks. These attacks use psychological manipulation to trick victims into divulging confidential information. A common example might be a hacker contacting a company posing as a third-party technology vendor, asking for access to a secure system, or impersonating the company CEO and demanding an employee pay a fictitious invoice. 4. Insider Threats and Unauthorized Access These network security threats are particularly dangerous because they are very difficult to catch. Most traditional security tools are not configured to detect malicious insiders, who generally have permission to access sensitive data and assets. Insider Threats. Employees, associates, and partners with access to sensitive data may represent severe security risks. If an authorized user decides to steal data and sell it to a hacker or competitor, you may not be able to detect their attack using traditional security tools. That’s what makes insider threats so dangerous, because they are often undetectable. Unauthorized Access. This includes a broad range of methods used to gain illegal access to networks or systems. The goal is usually to steal data or alter it in some way. Attackers may use credential-stuffing attacks to access sensitive networks, or they can try brute force methods that involve automatically testing millions of username and password combinations until they get the right one. This often works because people reuse passwords that are easy to remember. Solutions to Network Security Threats Each of the security threats listed above comes with a unique set of risks, and impacts organizations in a unique way. There is no one-size-fits-all solution to navigating these risks. Every organization has to develop a cybersecurity policy that meets its specific needs. However, the most secure organizations usually share the following characteristics. Fundamental Security Measures Well-configured Firewalls. Firewalls control incoming and outgoing network traffic based on security rules. These rules can deny unauthorized traffic attempting to connect with sensitive network assets and block sensitive information from traveling outside the network. In each case, robust configuration is key to making the most of your firewall deployment . Choosing a firewall security solution like AlgoSec can dramatically improve your defenses against complex network threats. Anti-malware and Antivirus Software. These solutions detect and remove malicious software throughout the network. They run continuously, adapting their automated scans to include the latest threat detection signatures so they can block malicious activity before it leads to business disruption. Since these tools typically rely on threat signatures, they cannot catch zero-day attacks that leverage unknown vulnerabilities. Advanced Protection Tools Intrusion Prevention Systems. These security tools monitor network traffic for behavior that suggests unauthorized activity. When they find evidence of cyberattacks and security breaches, they launch automated responses that block malicious activity and remove unauthorized users from the network. Network Segmentation. This is the process of dividing networks into smaller segments to control access and reduce the attack surface. Highly segmented networks are harder to compromise because hackers have to repeatedly pass authentication checks to move from one network zone to another. This increases the chance that they fail, or generate activity unusual enough to trigger an alert. Security and Information Event Management (SIEM) platforms. These solutions give security analysts complete visibility into network and application activity across the IT environment. They capture and analyze log data from firewalls, endpoint devices, and other assets and correlate them together so that security teams can quickly detect and respond to unauthorized activity, especially insider threats. Endpoint Detection and Response (EDR). These solutions provide real-time visibility into the activities of endpoint devices like laptops, desktops, and mobile phones. They monitor these devices for threat indicators and automatically respond to identified threats before they can reach the rest of the network. More advanced Extended Detection and Response (XDR) solutions draw additional context and data from third party security tools and provide in-depth automation . Authentication and Access Control Multi-Factor Authentication (MFA). This technology enhances security by requiring users to submit multiple forms of verification before accessing sensitive data. This makes it useful against phishing attacks, social engineering, and insider threats, because hackers need more than just a password to gain entry to secure networks. MFA also plays an important role in Zero Trust architecture. Strong Passwords and Access Policies. There is no replacement for strong password policies and securely controlling user access to sensitive data. Security teams should pay close attention to password policy compliance, making sure employees do not reuse passwords across accounts and avoid simple memory hacks like adding sequential numbers to existing passwords. Preventing Social Engineering and Phishing While SIEM platforms, MFA policies and strong passwords go a long way towards preventing social engineering and phishing attacks, there are a few additional security measures worth taking to reduce these risks: Security Awareness Training. Leverage a corporate training LMS to educate employees about phishing and social engineering tactics. Phishing simulation exercises can help teach employees how to distinguish phishing messages from legitimate ones, and pinpoint the users at highest risk of falling for a phishing scam. Email Filtering and Verification: Email security tools can identify and block phishing emails before they arrive in the inbox. They often rely on scanning the reputation of servers that send incoming emails, and can detect discrepancies in email metadata that suggest malicious intent. Even if these solutions generally can’t keep 100% of malicious emails out of the inbox, they significantly reduce email-related threat risks. Dealing with DDoS and MitM Attacks These technical exploits can lead to significant business disruption, especially when undertaken by large-scale threat actors with access to significant resources. Your firewall configuration and VPN policies will make the biggest difference here: DDoS Prevention Systems. Protect against distributed denial of service attacks by implementing third-party DDoS prevention solutions, deploying advanced firewall configurations, and using load balancers. Some next generation firewalls (NGFWs) can increase protection against DDoS attacks by acting as a handshake proxy and dropping connection requests that do not complete the TCP handshake process. VPNs and Encryption: VPNs provide secure communication channels that prevent MitM attacks and data eavesdropping. Encrypted traffic can only be intercepted by attackers who go through the extra step of obtaining the appropriate decryption key. This makes it much less likely they focus on your organization instead of less secure ones that are easier to target. Addressing Insider Threats Insider threats are a complex security issue that require deep, multi-layered solutions to address. This is especially true when malicious insiders are actually employees with legitimate user credentials and privileges. Behavioral Auditing and Monitoring: Regular assessments and monitoring of user activities and network traffic are vital for detecting insider threats . Security teams need to look beyond traditional security deployments and gain insight into user behaviors in order to catch authorized users doing suspicious things like escalating their privileges or accessing sensitive data they do not normally access. Zero Trust Security Model. Assume no user or device is trustworthy until verified. Multiple layers of verification between highly segmented networks — with multi-factor authentication steps at each layer — can make it much harder for insider threats to steal data and conduct cyberattacks. Implementing a Robust Security Strategy Directly addressing known threats should be just one part of your cybersecurity strategy. To fully protect your network and assets from unknown risks, you must also implement a strong security posture that can address risks associated with new and emerging cyber threats. Continual Assessment and Improvement The security threat landscape is constantly changing, and your security posture must adapt and change in response. It’s not always easy to determine exactly how your security posture should change, which is why forward-thinking security leaders periodically invest in vulnerability assessments designed to identify security vulnerabilities that may have been overlooked. Once you have a list of security weaknesses you need to address, you can begin the process of proactively addressing them by configuring your security tech stack and developing new incident response playbooks. These playbooks will help you establish a coordinated, standardized response to security incidents and data breaches before they occur. Integration of Security Tools Coordinating incident response plans isn’t easy when every tool in your tech stack has its own user interface and access control permissions. You may need to integrate your security tools into a single platform that allows security teams to address issues across your entire network from a single point of reference. This will help you isolate and address security issues on IoT devices and mobile devices without having to dedicate a particular team member exclusively to that responsibility. If a cyberattack that targets mobile apps occurs, your incident response plan won’t be limited by the bottleneck of having a single person with sufficient access to address it. Similarly, highly integrated security tools that leverage machine learning and automation can enhance the scalability of incident response and speed up incident response processes significantly. Certain incident response playbooks can be automated entirely, providing near-real-time protection against sophisticated threats and freeing your team to focus on higher-impact strategic initiatives. Developing and Enforcing Security Policies Developing and enforcing security policies is one of the high-impact strategic tasks your security team should dedicate a great deal of time and effort towards. Since the cybersecurity threat landscape is constantly changing, you must commit to adapting your policies in response to new and emerging threats quickly. That means developing a security policy framework that covers all aspects of network and data security. Similarly, you can pursue compliance with regulatory standards that ensure predictable outcomes from security incidents. Achieving compliance with standards like NIST, CMMC, PCI-DSS, and HIPPA can help you earn customers’ trust and open up new business opportunities. AlgoSec: Your Partner in Network Security Protecting against network threats requires continuous vigilance and the ability to adapt to fast-moving changes in the security landscape. Every level of your organization must be engaged in security awareness and empowered to report potential security incidents. Policy management and visibility platforms like AlgoSec can help you gain control over your security tool configurations. This enhances the value of continuous vigilance and improvement, and boosts the speed and accuracy of policy updates using automation. Consider making AlgoSec your preferred security policy automation and visibility platform. Schedule a demo Related Articles 2025 in review: What innovations and milestones defined AlgoSec’s transformative year in 2025? AlgoSec Reviews Mar 19, 2023 · 2 min read Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • AlgoSec | NGFW vs UTM: What you need to know

    Podcast: Differences between UTM and NGFW In our recent webcast discussion alongside panelists from Fortinet, NSS Labs and General... Firewall Change Management NGFW vs UTM: What you need to know Sam Erdheim 2 min read Sam Erdheim Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 2/19/13 Published Podcast: Differences between UTM and NGFW In our recent webcast discussion alongside panelists from Fortinet, NSS Labs and General Motors, we examined the State of the Firewall in 2013. We received more audience questions during the webcast than the time allowed for, so we’d like to answer these questions through several blog posts in a Q&A format with the panelists. By far the most asked question leading up to and during the webcast was: “What’s the difference between a UTM and a Next-Generation Firewall?” Here’s how our panelists responded: Pankil Vyas, Manager – Network Security Center, GM UTM are usually bundled feature set, NGFW has bundle but licensing can be selective. Depending on the firewall’s function on the network, some UTM features might not be useful, creating performance issues and sometimes firewall conflicts with packet flows. Nimmy Reichenberg, VP of Strategy, AlgoSec Different people give different answers to this question, but if we refer to Gartner who are certainly a credible source, a UTM consolidates many security functions (email security, AV, IPS, URL filtering etc.) and is tailored mostly to SMBs in terms of management capabilities, throughput, support, etc. A NGFW is an enterprise-grade product that at the very least includes IPS capabilities and application awareness (layer 7 control). You can refer to a Gartner paper titled “Defining the Next-Generation Firewall” for more information. Ryan Liles, Director of Testing Services, NSS Labs There really aren’t any differences in a UTM and a NGFW. The technologies used in the two are essentially the same, and they generally have the same capabilities. UTM devices are typically classified with lower throughput ratings than their NGFW counterparts, but for all practical purposes the differences are in marketing. The term NGFW was coined by vendors working with Gartner to create a class of products capable of fitting into an enterprise network that contained all of the features of a UTM. The reason for the name shift is that there was a pervasive line of thought stating a device capable of all of the functions of a UTM/NGFW would never be fast enough to run in an enterprise network. As hardware has progressed, the capability of these devices to hit multi-gigabit speeds began to prove that they were indeed capable of enterprise deployment. Rather than try and fight the sentiment that a UTM could never fit into an enterprise, the NGFW was born. Patrick Bedwell, VP of Products, Fortinet There are several definitions in the market of both terms. Analyst firms IDC and Gartner provided the original definitions of the terms. IDC defined UTM as a security appliance that combines firewall, gateway antivirus, and intrusion detection / intrusion prevention (IDS/IPS). Gartner defined an NGFW as a single device with integrated IPS with deep packet scanning, standard first-generation FW capabilities (NAT, stateful protocol inspection, VPN, etc.) and the ability to identity and control applications running on the network. Since their initial definitions, the terms have been used interchangeably by customers as well as vendors. Depending on with whom you speak, UTM can include NGFW features like application ID and control, and NGFW can include UTM features like gateway antivirus. The terms are often used synonymously, as both represent a single device with consolidated functionality. At Fortinet, for example, we offer customers the ability to deploy a FortiGate device as a pure firewall, an NGFW (enabling features like Application Control or User- and Device-based policy enforcement) or a full UTM (enabling additional features like gateway AV, WAN optimization, and so forth). Customers can deploy as much or as little of the technology on the FortiGate device as they need to match their requirements. If you missed the webcast, you can view it on-demand. We invite you to continue this debate and discussion by commenting here on the blog or via the Twitter hashtag Schedule a demo Related Articles 2025 in review: What innovations and milestones defined AlgoSec’s transformative year in 2025? AlgoSec Reviews Mar 19, 2023 · 2 min read Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • AlgoSec | Network segmentation vs. VLAN explained

    Safeguarding the network architecture is the need of the hour. According to a study, the average cost of a data breach is at an all-time... Network Security Policy Management Network segmentation vs. VLAN explained Tsippi Dach 2 min read Tsippi Dach Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 8/9/23 Published Safeguarding the network architecture is the need of the hour. According to a study, the average cost of a data breach is at an all-time high of $4.35 million. And this figure will only increase with governments and regulators becoming ever stricter on data breaches. The go-to method IT administrators adopt to safeguard their networks is network segmentation. By segmenting a larger network into smaller chunks, it becomes much more manageable to secure the entire network. But network segmentation is a broad concept and doesn’t refer to a single procedure. In fact, there are several segmentation processes — one of them being VLAN. Instead of simplifying, this adds to the complexity. In this article, we will explain the core difference between network segmentation and VLAN and when you should opt for a particular one over the other. What is network segmentation? Let’s start with the definitions of network segmentation and VLAN. By definition, network segmentation is the practice of compartmentalizing a network according to firewall rules . In other words, it’s about dividing a computer network into subnetworks. The subnetworks, at the IP level, are known as subnets. Each of the subnets then works independently and in isolation. Think of how a nation is split into various states and provinces for better management at the local level. Running an entire nation at the federal level is too much work. In addition to subnetting, there are other segmentation options like firewall segmentation and SDN (Software Defined Network) segmentation. But for this article’s sake, we will focus on subnets since those are the most common. What is VLAN? VLAN or Virtual LAN (Virtual Local Area Network) is also a type of network segmentation approach where the main physical network is divided into multiple smaller virtual networks. The division is done logically or virtually, not requiring buying additional physical resources. The same resource is divided using computer logic. There are several benefits to dividing the parts of the network, either using VLAN segmentation or subnet techniques. Some of them are: Broadcast domain isolation Both subnets and VLAN isolate broadcast domains. This way, broadcasting network traffic is contained in a single segment instead of being exposed to the entire network. This reduces the chance of network congestion during peak hours and unnecessary server overload, thereby maximizing efficiency. Enhanced security The isolation by subnets or VLAN enhances the IT network’s security policies. This is achieved through various factors that are at play. But primarily, the creation of subnetworks makes the flat network more secure. With multiple subnetworks, you can regulate the security parameters. Thus, those subnets containing critical data (like that of healthcare) can have enhanced cybersecurity measures more than others, making them harder to crack. So, from a security perspective, both subnets and VLAN are a must. Better network management With digitization and IT modernization, the IT infrastructure is growing. Concurrently, it’s getting harder to manage them. Microsegmentation is one way of managing the ever-growing infrastructure. By segmenting, you can deploy teams to each segment, thereby strengthening their management and accountability. With the implementation of SDN, you can even configure and automate the management of some of the subnetworks. Flexibility in scalability Many network administrators face network performance and scalability issues expanding resources. The issues are a mix of technical and economical. Network segmentation offers a solution to such issues. By segmenting the entire data center network, you can choose which segments to expand and control the resources granted to each segment. This also makes scalability more economical. While both offer scalability opportunities, VLAN offers superior functionality than subnets. Reduced scope of compliance Compliance is another area that IT execs need to work on. And network segmentation, either via subnets or VLAN, can help in this regard. By having subnets, you don’t have to audit your entire segmented network as required by regulators. Just audit the necessary subnets and submit the reports to the regulators for approval. This takes far less time and costs significantly less than auditing the entire network. Differences between network segmentation and VLAN By definition, network segmentation (subnetting) and VLAN sound pretty similar. After all, there’s a division of the main network into subnetworks or smaller networks. But besides the core similarities mentioned above, there are a few critical differences. Let’s dive into the differences between the two. The primary difference between the two subnets are layer 3 divisions, while VLANs are layer 2 divisions. As you may recall, networks are layer 1 (device), layer 2 (data link), layer 3 (IP, routers), and so on, up to layer 7 (application). TCP/IP is the newer framework with four layers only. So, when you divide a network at a data link, you need to adopt VLAN. With VLAN, several networks exist on the same physical network but may not be connected to the same fiber switch. In subnets, the division occurs at IP level. Thus, the independent subnets are assigned their IP addresses and communicate with others over layer 3. Besides this significant difference, there are other dissimilarities you should know. Here’s a table to help you understand: VLAN Subnet 1 Divides the network within the same physical network using logic. Divides the IP network into multiple IP networks 2 VLANs communicate with other devices within the same LAN The communication between the subnets is carried out over layer 3 3 It is configured at the switch side It is configured at IP level 4 VLAN divisions are software-based terminology since they’re divided logically. Subnets can be both hardware- of software-based 5 VLAN provides better network access and tend to be more stable Subnets offer limited control When to adopt a subnet? There are use cases when subnets are more suited, while there are cases when you’re better off with Virtual LANs. As per the definition, you need to adopt a subnet when dividing different networks at IP level. So, if you want to create multiple IP addresses for each partition, implement subnets. The subnets are essentially networks within a network with their own IP addresses. Thus, they divide the broadcast domain and improve speed and efficiency. Subnets are also the go-to segmentation method when you need to make the sub-networks available over layer 3 to the outside world. With appropriate access control lists, anyone with an internet connection would be able to access the subnets But subnetting is also used to prevent access to a particular subnet. For example, you may want to limit access to the company’s software codebase to anyone outside the development department. So, only network devices with approved IP addresses used by the developer network are approved to access the codebase. But there are two downsides to subnets you should know. The first one is increased time complexity. When dealing with a single network, three steps are in place to reach the Process (Source Host, Destination Network, and Process). In subnets, there’s an additional step involved (Source Host, Destination Network, Subnet, Process). This extra step increases time complexity, requiring more time for data transfer and connectivity. It also affects stability. Subnetting also increases the number of IP addresses required since each subnet requires its own IP address. This can become hard to manage over time. When to adopt VLAN? Virtual LANs are internal networks within the same physical network. They interact with one another, not with other devices on the same network or outside the world. Think of VLAN as a private wireless network at home. Your neighbors don’t have access to it, but everyone in your home has. If that sounds like your desired result, you should adopt VLAN. There are three types of VLANs (basic, extended, and tagged). In basic VLAN, you assign IDs to each switch port or PCI . Once assigned, you can’t change them. Extended VLAN has more functionalities like priority-based routing. Lastly, tagged VLAN enables you to create multiple VLANs with IEEE 802.1Q. The main advantages of different VLANs over subnet are speed and stability. Since endpoints do not have to resolve IP addresses every time, they tend to be faster. But there’s a significant disadvantage to VLANs: It’s easier to breach multiple partitions if there’s a malicious injection. Without proper network security controls, it is easier to exploit vulnerabilities using malware and ransomware , putting your entire network at risk. Having ACLs (access control lists) can help in such situations. Furthermore, there are issues arising out of physical store requirements. Connecting two segments in VLAN requires you to use routers and IoT. Routers are physical devices that take up space. The more segments you create, the more routers you need to use. Over time, management can become an issue. The bottom line Both subnets and VLANs are network segmentation approaches that improve security and workload management. It’s not a given that you can’t have both. Some companies benefit from the implementation of VLAN and subnets simultaneously. But there are specific times when IT service providers prefer one over the other. Consider your requirements to select the approach that’s right for you. Schedule a demo Related Articles 2025 in review: What innovations and milestones defined AlgoSec’s transformative year in 2025? AlgoSec Reviews Mar 19, 2023 · 2 min read Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • AlgoSec | Securely accelerating application delivery

    In this guest blog, Jeff Yager from IT Central Station (soon to be PeerSpot), discusses how actual AlgoSec users have been able to... Security Policy Management Securely accelerating application delivery Jeff Yeger 2 min read Jeff Yeger Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 11/15/21 Published In this guest blog, Jeff Yager from IT Central Station (soon to be PeerSpot), discusses how actual AlgoSec users have been able to securely accelerate their app delivery. These days, it is more important than ever for business owners, application owners, and information security professionals to speak the same language. That way, their organizations can deliver business applications more rapidly while achieving a heightened security posture. AlgoSec’s patented platform enables the world’s most complex organizations to gain visibility and process changes at zero-touch across the hybrid network. IT Central Station members discussed these benefits of AlgoSec , along with related issues, in their reviews on the site. Application Visibility AlgoSec allows users to discover, identify, map, and analyze business applications and security policies across their entire networks. For instance, Jacob S., an IT security analyst at a retailer, reported that the overall visibility that AlgoSec gives into his network security policies is high. He said, “It’s very clever in the logic it uses to provide insights, especially into risks and cleanup tasks . It’s very valuable. It saved a lot of hours on the cleanup tasks for sure. It has saved us days to weeks.” “AlgoSec absolutely provides us with full visibility into the risk involved in firewall change requests,” said Aaron Z. a senior network and security administrator at an insurance company that deals with patient health information that must be kept secure. He added, “There is a risk analysis piece of it that allows us to go in and run that risk analysis against it, figuring out what rules we need to be able to change, then make our environment a little more secure. This is incredibly important for compliance and security of our clients .” Also impressed with AlgoSec’s overall visibility into network security policies was Christopher W., a vice president – head of information security at a financial services firm, who said, “ What AlgoSec does is give me the ability to see everything about the firewall : its rules, configurations and usage patterns.” AlgoSec gives his team all the visibility they need to make sure they can keep the firewall tight. As he put it, “There is no perimeter anymore. We have to be very careful what we are letting in and out, and Firewall Analyzer helps us to do that.” For a cyber security architect at a tech services company, the platform helps him gain visibility into application connectivity flows. He remarked, “We have Splunk, so we need a firewall/security expert view on top of it. AlgoSec gives us that information and it’s a valuable contributor to our security environment.” Application Changes and Requesting Connectivity AlgoSec accelerates application delivery and security policy changes with intelligent application connectivity and change automation. A case in point is Vitas S., a lead infrastructure engineer at a financial services firm who appreciates the full visibility into the risk involved in firewall change requests. He said, “[AlgoSec] definitely allows us to drill down to the level where we can see the actual policy rule that’s affecting the risk ratings. If there are any changes in ratings, it’ll show you exactly how to determine what’s changed in the network that will affect it. It’s been very clear and intuitive.” A senior technical analyst at a maritime company has been equally pleased with the full visibility. He explained, “That feature is important to us because we’re a heavily risk-averse organization when it comes to IT control and changes. It allows us to verify, for the most part, that the controls that IT security is putting in place are being maintained and tracked at the security boundaries .” A financial services firm with more than 10 cluster firewalls deployed AlgoSec to check the compliance status of their devices and reduce the number of rules in each of the policies. According to Mustafa K. their network security engineer, “Now, we can easily track the changes in policies. With every change, AlgoSec automatically sends an email to the IT audit team. It increases our visibility of changes in every policy .” Speed and Automation The AlgoSec platform automates application connectivity and security policy across a hybrid network so clients can move quickly and stay secure. For Ilya K., a deputy information security department director at a computer software company, utilizing AlgoSec translates into an increase in security and accuracy of firewall rules. He said, “ AlgoSec ASMS brings a holistic view of network firewall policy and automates firewall security management in very large-sized environments. Additionally, it speeds up the changes in firewall rules with a vendor-agnostic approach.” “The user receives the information if his request is within the policies and can continue the request,” said Paulo A., a senior information technology security analyst at an integrator. He then noted, “Or, if it is denied, the applicant must adjust their request to stay within the policies. The time spent for this without AlgoSec is up to one week, whereas with AlgoSec, in a maximum of 15 minutes we have the request analyzed .” The results of this capability include greater security, a faster request process and the ability to automate the implementation of rules. Srdjan, a senior technical and integration designer at a large retailer, concurred when he said, “ By automating some parts of the work, business pressure is reduced since we now deliver much faster . I received feedback from our security department that their FCR approval process is now much easier. The network team is also now able to process FCRs much faster and with more accuracy.” To learn more about what IT Central Station members think about AlgoSec, visit https://www.itcentralstation.com/products/algosec-reviews Schedule a demo Related Articles 2025 in review: What innovations and milestones defined AlgoSec’s transformative year in 2025? AlgoSec Reviews Mar 19, 2023 · 2 min read Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • AlgoSec | Bridging Network Security Gaps with Better Network Object Management

    Prof. Avishai Wool, AlgoSec co-founder and CTO, stresses the importance of getting the often-overlooked function of managing network... Professor Wool Bridging Network Security Gaps with Better Network Object Management Prof. Avishai Wool 2 min read Prof. Avishai Wool Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 4/13/22 Published Prof. Avishai Wool, AlgoSec co-founder and CTO, stresses the importance of getting the often-overlooked function of managing network objects right, particularly in hybrid or multi-vendor environments Using network traffic filtering solutions from multiple vendors makes network object management much more challenging. Each vendor has its own management platform, which often forces network security admins to define objects multiple times, resulting in a counter effect. First and foremost, this can be an inefficient use of valuable resources from a workload bottlenecking perspective. Secondly, it creates a lack of naming consistency and introduces a myriad of unexpected errors, leading to security flaws and connectivity problems. This can be particularly applicable when a new change request is made. With these unique challenges at play, it begs the question: Are businesses doing enough to ensure their network objects are synchronized in both legacy and greenfield environments? What is network object management? At its most basic, the management of network objects refers to how we name and define “objects” within a network. These objects can be servers, IP addresses, or groups of simpler objects. Since these objects are subsequently used in network security policies, it is imperative to simultaneously apply a given rule to an object or object group. On its own, that’s a relatively straightforward method of organizing the security policy. But over time, as organizations reach scale, they often end up with large quantities of network objects in the tens of thousands, which typically lead to critical mistakes. Hybrid or multi-vendor networks Let’s take name duplication as an example. Duplication on its own is bad enough due to the wasted resource, but what’s worse is when two copies of the same name have two distinctly different definitions. Let’s say we have a group of database servers in Environment X containing three IP addresses. This group is allocated a name, say “DBs”. That name is then used to define a group of database servers in Environment Y containing only two IP addresses because someone forgot to add in the third. In this example, the security policy rule using the name DBs would look absolutely fine to even a well-trained eye, because the names and definitions it contained would seem identical. But the problem lies in what appears below the surface: one of these groups would only apply to two IP addresses rather than three. As in this case, minor discrepancies are commonplace and can quickly spiral into more significant security issues if not dealt with in the utmost time-sensitive manner. It’s important to remember that accuracy is the name in this game. If a business is 100% accurate in the way it handles network object management, then it has the potential to be 100% efficient. The Bottom Line The security and efficiency of hybrid multi-vendor environments depend on an organization’s digital hygiene and network housekeeping. The naming and management of network objects aren’t particularly glamorous tasks. Having said that, everything from compliance and automation to security and scalability will be far more seamless and risk averse if taken care of correctly. To learn more about network object management and why it’s arguably more important now than ever before, watch our webcast on the subject or read more in our resource hub . Schedule a demo Related Articles 2025 in review: What innovations and milestones defined AlgoSec’s transformative year in 2025? AlgoSec Reviews Mar 19, 2023 · 2 min read Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • The business case for AlgoSec Cloud Enterprise (ACE) - AlgoSec

    The business case for AlgoSec Cloud Enterprise (ACE) Download PDF Schedule time with one of our experts Schedule time with one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Continue

  • Business-driven Security Management For Local Governments - AlgoSec

    Business-driven Security Management For Local Governments Download PDF Schedule time with one of our experts Schedule time with one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Continue

bottom of page