top of page

Search results

675 results found with an empty search

  • AlgoSec | Operation “Red Kangaroo”: Industry’s First Dynamic Analysis of 4M Public Docker Container Images

    Linux containers aren’t new. In fact, this technology was invented 20 years ago. In 2013, Docker entered the scene and revolutionized... Cloud Security Operation “Red Kangaroo”: Industry’s First Dynamic Analysis of 4M Public Docker Container Images Rony Moshkovich 2 min read Rony Moshkovich Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 12/1/20 Published Linux containers aren’t new. In fact, this technology was invented 20 years ago. In 2013, Docker entered the scene and revolutionized Linux containers by offering an easy-to-use command line interface (CLI), an engine, and a registry server. Combined, these technologies have concealed all the complexity of building and running containers, by offering one common industry standard . As a result, Docker’s popularity has sky-rocketed, rivalling Virtual Machines, and transforming the industry. In order to locate and share Docker container images, Docker is offering a service called Docker Hub . Its main feature, repositories , allows the development community to push (upload) and pull (download) container images. With Docker Hub, anyone in the world can download and execute any public image, as if it was a standalone application. Today, Docker Hub accounts over 4 million public Docker container images . With 8 billion pulls (downloads) in January 2020 and growing , its annualized image pulls should top 100 billion this year. For comparison , Google Play has 2.7M Android apps in its store, with a download rate of 84 billion downloads a year. How many container images currently hosted at Docker Hub are malicious or potentially harmful? What sort of damage can they inflict? What if a Docker container image downloaded and executed malware at runtime? Is there a reliable way to tell that? What if a compromised Docker container image was downloaded by an unsuspecting customer and used as a parent image to build and then deploy a new container image into production, practically publishing an application with a backdoor built into it? Is there any way to stop that from happening? At Prevasio, we asked ourselves these questions multiple times. What we decided to do has never been done before. The Challenge At Prevasio, we have built a dynamic analysis sandbox that uses the same principle as a conventional sandbox that ‘detonates’ malware in a safe environment. The only difference is that instead of ‘detonating’ an executable file, such as a Windows PE file or a Linux ELF binary, Prevasio Analyzer first pulls (downloads) an image from any container registry, and then ‘detonates’ it in its own virtual environment, outside the organization/customer infrastructure. Using our solution, we then dynamically analyzed all 4 million container images hosted at Docker Hub. In order to handle such a massive volume of images, Prevasio Analyzer was executed non-stop for a period of one month on 800 machines running in parallel. The result of our dynamic scan reveals that: 51 percent of all containers had “critical” vulnerabilities, while 13 percent were classified as “high” and four percent as “moderate” vulnerabilities. Six thousand containers were riddled with cryptominers, hacking tools/pen testing frameworks, and backdoor trojans. While many cryptominers and hacking tools may not be malicious per se, they present a potentially unwanted issue to an enterprise. More than 400 container images (with nearly 600,000 pulls) of weaponized Windows malware crossing over into the world of Linux. This crossover is directly due to the proliferation of cross-platform code (e.g. GoLang, .NET Core and PowerShell Core). Our analysis of malicious containers also shows that quite a few images contain a dynamic payload. That is, an image in its original form does not have a malicious binary. However, at runtime, it might be scripted to download a source of a coinminer, to then compile and execute it. A dynamic analysis sandbox, such as Prevasio Analyzer, is the only solution that provides a behavioral analysis of Docker containers. It is built to reveal malicious intentions of Docker containers by executing them in its own virtual environment, revealing a full scope of their behavior. The whitepaper with our findings is available here . Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • AlgoSec professional services | AlgoSec

    The goal of the AlgoSec Professional Services Team is to partner with you and enable you to meet your budget, time and resource constraints AlgoSec professional services Service offerings We offer a variety of à la carte Professional Services to help you quickly benefit from your AlgoSec investment. AlgoSec JumpStart packages View detailed information Through our new JumpStart packages we will deploy your AlgoSec products quickly and cost-effectively within your environment, so that you can start generating value from your AlgoSec investment as soon as possible Basic deployment of the AlgoSec security management suite View detailed information This service includes installing your AlgoSec appliances with the most recent build of the AlgoSec Security Management Suite including AlgoSec Firewall Analyzer and/or AlgoSec FireFlow and/or AlgoSec BusinessFlow, then verifying connectivity and defining devices. We will also verify that the reporting functionality works properly for each deployed device, and will provide sufficient knowledge transfer to enable you to perform basic operations in your AlgoSec environment. AlgoSec technical audit View detailed information Get a technical audit of your running AlgoSec environment – remotely or on-premises. Make sure you are optimally configured to get the best performance and functionality. Identify critical issues, receive insights and actionable suggestions to help you improve your network, identify issues that may have arisen since deployment, as well as recommendations for architectural improvements and optimization. AlgoSec Technical Audit is recommended once a year, and at least 6 months following initial deployment. Integration with existing Change Management Systems (CMS) View detailed information We can seamlessly integrate with any existing CMS including ServiceNow, Remedy, ServiceDesk and others. We can integrate your CMS system with AlgoSec via a Web Services call, as well as import historical change requests into AlgoSec. Advanced configuration View detailed information Suitable for complex, enterprise environments, this service includes verifying requirements and designing the appropriate topology for: High-Availability or Disaster-Recovery modes Load Distribution mode Geographical Distribution or Central-Manager / Remote-Agent mode Develop custom reports View detailed information We can create custom risk profiles and baseline configuration reports to meet your unique needs. Develop custom change workflows View detailed information While AlgoSec includes several out-of-the-box workflows, we can develop custom workflows to meet your unique needs. Customization options include creating the different steps in a change process, managing the ticket lifecycle based on your processes, dynamically routing tickets to required approvers and changing request form fields and appearance. Project management and customer success management View detailed information We can provide on-going project management to support your AlgoSec implementation. We provide regular status updates and meetings to ensure that the project is on schedule and meets your requirements. Schedule time with one of our experts Schedule time with one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* Long answer Send message

  • Money-Back Guarantee | AlgoSec

    Since 2005 we offer the industry’s only money back guarantee If we do not meet your expectations you have the right to cancel the purchase Money-Back Guarantee At AlgoSec we are passionate about customer satisfaction. Therefore, since 2005 we have offered the industry’s only money-back-guarantee. If we do not meet your expectations you have the right to cancel your software purchase and get your money back. More importantly, you decide whether to invoke the money-back guarantee. You are the sole judge. The only condition is that you do it within a reasonable timeline. As outlined below. This way you can ensure that the AlgoSec solution works across your entire estate, not just in your lab – without assuming any financial risk. Money-Back Guarantee Terms The terms of the money-back guarantee are outlined in the table. They depend on the deal size and whether or not the product was evaluated in the customer’s lab. Note: Make sure the terms of the Money Back Guarantee are included in your project proposal. Product Deal Size Less than $300K $300K-$1M More than $1M Product Purchased
WITHOUT an Evaluation 60 Days 90 Days 120 Days Product Purchased
AFTER an Evaluation 30 Days 45 Days 60 Days Contact sales At AlgoSec, Customer Satisfaction Starts at the Top Yuval Baron Chairman and CEO “When AlgoSec was only 2 years old we initiated the industry’s only money back guarantee. Nowadays, we have over 1,800 customers and the AlgoSec team still shares the same desire and passion to make sure they are all happy.” Contact sales Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Continue

  • Partner solution brief Manage secure application connectivity within BMC Remedy - AlgoSec

    Partner solution brief Manage secure application connectivity within BMC Remedy Download PDF Schedule time with one of our experts Schedule time with one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Continue

  • AlgoSec | 5 mindset shifts security teams must adopt to master multi-cloud security

    Level Up Your Security Game: Time for a Mindset Reset! Hey everyone, and welcome! If you're involved in keeping your organization safe... 5 mindset shifts security teams must adopt to master multi-cloud security Iris Stein 2 min read Iris Stein Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 4/9/25 Published Level Up Your Security Game: Time for a Mindset Reset! Hey everyone, and welcome! If you're involved in keeping your organization safe online these days, you're in the right place. For years, security felt like building a super strong castle with thick walls and a deep moat, hoping the bad guys would just stay outside. But let's be real, in our multi-cloud world, that castle is starting to look a little... outdated. Think about it: your apps and data aren't neatly tucked away in one place anymore. They're bouncing around on AWS, Azure, GCP, all sorts of platforms – practically everywhere! Trying to handle that with old-school security is like trying to catch smoke with a fishing net. Not gonna work, right? That's why we're chatting today. Gal Yosef, Head of Product Management in the U.S., gets it. He's helped us dive into some crucial mindset shifts – basically, new ways of thinking – that are essential for navigating the craziness of modern security. We gotta ditch the old ways and get ready to be more agile, work together better, and ultimately, be way more effective. Mindset Shift #1: From "Our Stuff is Safe Inside This Box" to "Trust Nothing, Verify Everything" Remember the good old days? We built a perimeter – firewalls, VPNs – thinking that everything inside was safe and sound (danger!). Security was all about guarding that edge. The Problem: Well, guess what? That world is gone! Multi-cloud environments have totally shattered that perimeter. Trying to just secure the network edge leaves your real treasures – your applications, users, and data – vulnerable as they roam across different clouds. It's like locking the front door but leaving all the windows wide open! The New Way: Distributed Trust. Security needs to follow your assets, wherever they go. Instead of just focusing on the infrastructure (the pipes and wires), we need to embrace Zero-Trust principles . Think of it like this: never assume anyone or anything is trustworthy, even if they're "inside." We need identity-based, adaptive security policies that constantly validate trust, rather than just assuming it based on location. Security becomes built into applications and workloads, not just bolted onto the network. Think of it this way: Instead of one big, guarded gate, you have individual, smart locks on every valuable asset. You're constantly checking who's accessing what, no matter where they are. It's like having a personal bodyguard for each of your important things, always making sure they have the right ID. Mindset Shift #2: From "My Team Handles Network Security, Their Team Handles Cloud Security" to "Let's All Be Security Buddies!" Ever feel like your network security team speaks a different language than your cloud security team? You're not alone! Traditionally, these have been separate worlds, with network teams focused on firewalls and cloud teams on security groups. The Problem: These separate silos are a recipe for confusion and fragmented security policies. Attackers? They love this! It's like having cracks in your armor. They aren't always going to bash down the front door; they're often slipping through the gaps created by this lack of communication. The New Way: Cross-functional collaboration. We need to tear down those walls! Network and cloud security teams need to work together, speaking a shared security language. Unified visibility and consistent policies across all your environments are key. Think of it like a superhero team – everyone has their own skills, but they work together seamlessly to fight the bad guys. Regular communication, shared tools, and a common understanding of the risks are crucial. Mindset Shift #3: From "Reacting When Something Breaks" to "Always Watching and Fixing Things Before They Do" Remember the old days of waiting for an alert to pop up saying something was wrong? That's like waiting for your car to break down before you even think about checking the oil. Not the smartest move, right? The Problem: In the fast-paced world of the cloud, waiting for things to go wrong is a recipe for disaster. Attacks can happen super quickly, and by the time you react, the damage might already be done. Plus, manually checking everything all the time? Forget about it – it's just not scalable when you've got stuff spread across multiple clouds. The New Way: Continuous & Automated Enforcement. We need to shift to a mindset of constant monitoring and automated security actions. Think of it like having a security system that's always on, always learning, and can automatically respond to threats in real-time. This means using tools and processes that continuously check for vulnerabilities, enforce security policies automatically, and even predict potential problems before they happen. It's like having a proactive security guard who not only watches for trouble but can also automatically lock doors and sound alarms the moment something looks fishy. Mindset Shift #4: From "Locking Everything Down Tight" to "Finding the Right Balance with Flexible Rules" We used to think the best security was the strictest security – lock everything down, say "no" to everything. But let's be honest, that can make it super hard for people to actually do their jobs! It's like putting so many locks on a door that nobody can actually get through it. The Problem: Overly restrictive security can stifle innovation and slow things down. Developers can get frustrated, and the business can't move as quickly as it needs to. Plus, sometimes those super strict rules can even create workarounds that actually make things less secure in the long run. The New Way: Flexible Guardrails. We need to move towards security that provides clear boundaries (the "guardrails") but also allows for agility and flexibility. Think of it like setting clear traffic laws – you know what's allowed and what's not, but you can still drive where you need to go. This means defining security policies that are adaptable to different cloud environments and business needs. It's about enabling secure innovation, not blocking it. We need to find that sweet spot where security empowers the business instead of hindering it. Mindset Shift #5: From "Security is a Cost Center" to "Security is a Business Enabler" Sometimes, security gets seen as just an expense, something we have to do but doesn't really add value. It's like thinking of insurance as just another bill. The Problem: When security is viewed as just a cost, it often gets underfunded or seen as a roadblock. This can lead to cutting corners and ultimately increasing risk. It's like trying to save money by neglecting the brakes on your car – it might seem cheaper in the short term, but it can have disastrous consequences later. The New Way: Security as a Business Enabler. We need to flip this thinking! Strong security isn't just about preventing bad things from happening; it's about building trust with customers, enabling new business opportunities, and ensuring the long-term resilience of the organization. Think of it like a strong foundation for a building – without it, you can't build anything lasting. By building security into our processes and products from the start, we can actually accelerate innovation and gain a competitive advantage. It's about showing our customers that we take their data seriously and that they can trust us. Wrapping Up: Moving to a multi-cloud world is exciting, but it definitely throws some curveballs at how we think about security. By adopting these five new mindsets, we can ditch the outdated castle mentality and build a more agile, collaborative, and ultimately more secure future for our organizations. It's not about being perfect overnight, but about starting to shift our thinking and embracing these new approaches. So, let's level up our security game together! Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • AlgoSec | 4 tips to manage your external network connections

    Last week our CTO, Professor Avishai Wool, presented a technical webinar on the do’s and don’ts for managing external connectivity to and... Auditing and Compliance 4 tips to manage your external network connections Joanne Godfrey 2 min read Joanne Godfrey Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 8/10/15 Published Last week our CTO, Professor Avishai Wool, presented a technical webinar on the do’s and don’ts for managing external connectivity to and from your network . We kicked off our webinar by polling the audience (186 people) on how many external permanent connections into their enterprise network they have. 40% have less than 50 external connections 31% have 50-250 external connections 24% have more than 250 external connections 5% wish they knew how many external connections they have! Clearly this is a very relevant issue for many enterprises, and one which can have a profound effect on security. The webinar covered a wide range of best practices for managing the external connectivity lifecycle and I highly recommend that you view the full presentation. But in the meantime, here are a few key issues that you should be mindful of when considering how to manage external connectivity to and from your network: Network Segmentation While there has to be an element of trust when you let an external partner into your network, you must do all you can to protect your organization from attacks through these connections. These include placing your servers in a demilitarized zone (DMZ), segregating them by firewalls, restricting traffic in both directions from the DMZ as well as using additional controls such as web application firewalls, data leak prevention and intrusion detection. Regulatory Compliance Bear in mind that if the data being accessed over the external connection is regulated, both your systems and the related peer’s systems are now subject t. So if the network connection touches credit card data, both sides of the connection are in scope, and outsourcing the processing and management of regulated data to a partner does not let you off the hook. Maintenance Sometimes you will have to make changes to your external connections, either due to planned maintenance work by your IT team or the peer’s team, or as a result of unplanned outages. Dealing with changes that affect external connections is more complicated than internal maintenance, as it will probably require coordinating with people outside your organisation and tweaking existing workflows, while adhering to any contractual or SLA obligations. As part of this process, remember that you’ll need to ensure that your information systems allow your IT teams to recognize external connections and provide access to the relevant technical information in the contract, while supporting the amended workflows. Contracts In most cases there is a contract that governs all aspects of the external connection – including technical and business issues. The technical points will include issues such as IP addresses and ports, technical contact points, SLAs, testing procedures and the physical location of servers. It’s important, therefore, that this contract is adhered to whenever dealing with technical issues related to external connections. These are just a few tips and issues to be aware of. To watch the webinar from Professor Wool in full, check out the recording here . Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • AlgoSec | Deploying NSPM to Implement a Gartner Analyst’s Work from Home Network Security Advice

    Recommendations from Rajpreet Kaur, Senior Principal Analyst at Gartner, in her recent blog on remote working, and a perspective on how... Security Policy Management Deploying NSPM to Implement a Gartner Analyst’s Work from Home Network Security Advice Jeffrey Starr 2 min read Jeffrey Starr Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 4/27/20 Published Recommendations from Rajpreet Kaur, Senior Principal Analyst at Gartner, in her recent blog on remote working, and a perspective on how Network Security Policy Management systems can help enterprises act upon this guidance The COVID-19 pandemic has been the catalyst for a global migration to remote home working. Managing and mitigating the network security risks this presents, on such an unprecedented scale and for a long period of time, poses a significant challenge even for companies that had remote access working plans in place before the pandemic. Not only are cybercriminals taking advantage of network insecurities to leverage attacks, they are also exploiting human anxiety around the crisis to break through security barriers. In fact, a recent survey found that 40 percent of companies reported seeing increased cyberattacks as they enable remote working. So how should organizations manage their security during these massive changes in network usage? In a recent blog , Rajpreet Kaur , Gartner Senior Principal Analyst, and a specialized expert on both hybrid environment network security and NSPM tools, offered recommendations to organizations on how to handle remote infrastructure security challenges, many of which closely align with a focus on network policy automation and application security. Here’s how network security policy management systems can support and enable Rajpreet Kaur’s key recommendations. 1. Don’t panic and start moving things to the cloud without a proper architectural design in place. Panicking and starting a large-scale move to the cloud without a proper plan in place can lead to poor security controls and ill-prepared migration. Before moving to the cloud, organizations must consider their network’s architectural design, which should always start with analysis. The analytical and discovery capabilities of NSPM systems automate this process by discovering and mapping network connectivity and providing a network map, which helps you to understand your network components, making migrations easier, faster and glitch-free. 2. Design a proper network security architecture and plan considering limited disruption and supporting work from home. Implementing these immediate and urgent network changes can only be done effectively and securely with robust change management processes. As with network analysis, NSPM automation capabilities are also vital in rapid change management. Security automation dramatically accelerates change processes, with request generation to implementation time drastically shortened and enables better enforcement and auditing for regulatory compliance. It also helps organizations overcome skill gaps and staffing limitations, which may have already been impacted by the current crisis. NSPM solutions enable full end-to-end change analysis and automation, including what if security checks, automation design, push of changes, and full documentation and audit trail. This ensures that changes can be implemented rapidly, and applied consistently and efficiently, with a full audit trail of every change. 3. Plan for what you need now, don’t try to implement a long-term strategic solution to fix your immediate needs. The current widespread move to home working is adding an extra layer of complexity to remote network security, since organizations are finding themselves having to implement new security policies and roll out adoption in a very short timeframe. Considering this, it’s important for organizations to focus on short-term needs, rather than attempting to develop a long-term strategic solution. Trying to develop a long-term solution in such a short window can be overwhelming and increase the risk of opening security vulnerabilities. Using NSPM speeds up the configuration and implementation process, allowing you to get your remote network security firewall policies up and running as soon as possible, with minimum disruption to your remote workforce. Once you have dealt with the critical immediate needs, you can then focus on developing a more long-term strategy. 4. Try to support your existing work from home employees by doing minimal changes to the existing architecture, like meeting throughput requirements and upgrading the equipment or restricting the access to a group of employees at times. Managing application connectivity and accessibility is key to ensuring minimal work disruption as employees move to remote working. An effective NSPM solution allows you to discover, identify and map business applications to ensure that they are safe and have the necessary connectivity flows. Having such a view of all the applications that are accessing the network allows security teams to map the workflow and provides visibility of the application’s required connectivity in order to minimise outages. 5. For any new network changes and upgrades, or new deployments, consider developing a work from home first strategy. Developing a work from home (WFH) strategy has never been more essential. The challenge is that WFH is a more vulnerable environment; employees are accessing sensitive data from a range of home devices, via outside networks, that may not have the same security controls. On top of this, cyber threats have already seen a sharp increase as cybercriminals exploit the widespread anxiety and vulnerabilities caused by the global crisis. IT security and networking staff are therefore having to do more, with the same staffing levels, whilst also navigating the challenges of doing this remotely from home. NSPM capabilities can help in overcoming these WFH issues. Security teams may, for example, need to change many Firewall rules to allow secure access to sensitive data. An effective NSPM solution can facilitate this and enable fast deployment by providing the ability to make changes to applications’ firewall openings from a single management interface. 6. Enhance security around public facing applications to protect against COVID-19 related cyber-attacks. With the move to remote working, organizations are increasingly relying on applications to carry out their work from home. Ensuring that business-critical applications stay available and secure while shifting to remote work is key to avoiding workflow disruption. It’s essential to take an application centric approach to application security, and an effective NSPM solution can help you to better manage and secure your business-critical applications . As discussed above, application visibility is key here. NSPM systems provides comprehensive application visibility, security operation teams can monitor critical applications for risks and vulnerabilities to ensure that they are safe. Gartner’s Rajpreet Kaur has delivered a good combination of practical and timely guidance along with the logical insights underlying the useful recommendations. These tips bring helpful guidance on the Work from Home security challenge that stands out for its clear relevance when there is now so much other noise out there. A robust NSPM can help you rapidly implement these invaluable recommendations. Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • AlgoSec for Tenable – Assess and Prioritize Vulnerabilities From the Business Perspective - AlgoSec

    AlgoSec for Tenable – Assess and Prioritize Vulnerabilities From the Business Perspective Download PDF Schedule time with one of our experts Schedule time with one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Continue

  • AlgoSec | Avoid the Traps: What You Need to Know About PCI Requirement 1 (Part 3)

    So we’ve made it to the last part of our blog series on PCI 3.0 Requirement 1. The first two posts covered Requirement 1.1... Auditing and Compliance Avoid the Traps: What You Need to Know About PCI Requirement 1 (Part 3) Matthew Pascucci 2 min read Matthew Pascucci Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 9/9/14 Published So we’ve made it to the last part of our blog series on PCI 3.0 Requirement 1. The first two posts covered Requirement 1.1 (appropriate firewall and router configurations) and 1.2 (restrict connections between untrusted networks and any system components in the cardholder data environment) and in this final post we’ll discuss key requirements of Requirements 1.3 -1.5 and I’ll again give you my insight to help you understand the implications of these requirements and how to comply with them. Implement a DMZ to limit inbound traffic to only system components that provide authorized publicly accessible services, protocols, and ports (1.3.1.): The DMZ is used to publish services such as HTTP and HTTPS to the internet and allow external entities to access these services. But the key point here is that you don’t need to open every port on the DMZ. This requirement verifies that a company has a DMZ implemented and that inbound activity is limited to only the required protocols and ports. Limit inbound Internet traffic to IP addresses within the DMZ (1.3.2): This is a similar requirement to 1.3.1, however instead of looking for protocols, the requirement focuses on the IPs that the protocol is able to access. In this case, just because you might need HTTP open to a web server, doesn’t mean that all systems should have external port 80 open to inbound traffic. Do not allow any direct connections inbound or outbound for traffic between the Internet and the cardholder data environment (1.3.3): This requirement verifies that there isn’t unfiltered access, either going into the CDE or leaving it, which means that all traffic that traverses this network must pass through a firewall. All unwanted traffic should be blocked and all allowed traffic should be permitted based on an explicit source/destination/protocol. There should never be a time that someone can enter or leave the CDE without first being inspected by a firewall of some type. Implement anti-spoofing measures to detect and block forged source IP addresses from entering the network (1.3.4): In an attempt to bypass your firewall, cyber attackers will try and spoof packets using the internal IP range of your network to make it look like the request originated internally. Enabling the IP spoofing feature on your firewall will help prevent these types of attacks. Do not allow unauthorized outbound traffic from the cardholder data environment to the Internet (1.3.5): Similar to 1.3.3, this requirement assumes that you don’t have direct outbound access to the internet without a firewall. However in the event that a system has filtered egress access to the internet the QSA will want to understand why this access is needed, and whether there are controls in place to ensure that sensitive data cannot be transmitted outbound. Implement stateful inspection, also known as dynamic packet filtering (1.3.6): If you’re running a modern firewall this feature is most likely already configured by default. With stateful inspection, the firewall maintains a state table which includes all the connections that traverse the firewall, and it knows if there’s a valid response from the current connection. It is used to stop attackers from trying to trick a firewall into initiating a request that didn’t previously exist. Place system components that store cardholder data (such as a database) in an internal network zone, segregated from the DMZ and other untrusted networks (1.3.7): Attackers are looking for your card holder database. Therefore, it shouldn’t be stored within the DMZ. The DMZ should be considered an untrusted network and segregated from the rest of the network. By having the database on the internal network provides another layer of protection against unwanted access. [Also see my suggestions for designing and securing you DMZ in my previous blog series: The Ideal Network Security Perimeter Design: Examining the DMZ Do not disclose private IP addresses and routing information to unauthorized parties (1.3.8): There should be methods in place to prevent your internal IP address scheme from being leaked outside your company. Attackers are looking for any information on how to breach your network, and giving them your internal address scheme is just one less thing they need to learn. You can stop this by using NAT, proxy servers, etc. to limit what can be seen from the outside. Install personal firewall software on any mobile and/or employee-owned devices that connect to the Internet when outside the network (for example, laptops used by employees), and which are also used to access the network (1.4): Mobile devices, such as laptops, that can connect to both the internal network and externally, should have a personal firewall configured with rules that prevent malicious software or attackers from communicating with the device. These firewalls need to be configured so that their rulebase can never be stopped or changed by anyone other than an administrator. Ensure that security policies and operational procedures for managing firewalls are documented, in use, and known to all affected parties (1.5): There needs to be a unified policy regarding firewall maintenance including how maintenance procedures are performed, who has access to the firewall and when maintenance is scheduled. Well, that’s it! Hopefully, my posts have given you a better insight into what is actually required in Requirement 1 and what you need to do to comply with it. Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • AlgoSec | Achieving policy-driven application-centric security management for Cisco Nexus Dashboard Orchestrat

    Jeremiah Cornelius, Technical Lead for Alliances and Partners at AlgoSec, discusses how Cisco Nexus Dashboard Orchestrator (NDO) users... Application Connectivity Management Achieving policy-driven application-centric security management for Cisco Nexus Dashboard Orchestrat Jeremiah Cornelius 2 min read Jeremiah Cornelius Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 1/2/24 Published Jeremiah Cornelius, Technical Lead for Alliances and Partners at AlgoSec, discusses how Cisco Nexus Dashboard Orchestrator (NDO) users can achieve policy-driven application-centric security management with AlgoSec. Leading Edge of the Data Center with AlgoSec and Cisco NDO AlgoSec ASMS A32.6 is our latest release to feature a major technology integration, built upon our well-established collaboration with Cisco — bringing this partnership to the front of the Cisco innovation cycle with support for Nexus Dashboard Orchestrator (NDO) . NDO allows Cisco ACI – and legacy-style Data Center Network Management – to operate at scale in a global context, across data center and cloud regions. The AlgoSec solution with NDO brings the power of our intelligent automation and software-defined security features for ACI, including planning, change management, and microsegmentation, to this global scope. I urge you to see what AlgoSec delivers for ACI with multiple use cases, enabling application-mode operation and microsegmentation, and delivering integrated security operations workflows. AlgoSec now brings support for Shadow EPG and Inter-Site Contracts with NDO, to our existing ACI strength. Let’s Change the World by Intent I had my first encounter with Cisco Application Centric Infrastructure in 2014 at a Symantec Vision conference. The original Senior Product Manager and Technical Marketing lead were hosting a discussion about the new results from their recent Insieme acquisition and were eager to onboard new partners with security cases and added operations value. At the time I was promoting the security ecosystem of a different platform vendor, and I have to admit that I didn’t fully understand the tremendous changes that ACI was bringing to security for enterprise connectivity. It’s hard to believe that it’s now seven years since then and that Cisco ACI has mainstreamed software-defined networking — changing the way that network teams had grown used to running their networks and devices since at least the mid-’90s. Since that 2014 introduction, Cisco’s ACI changed the landscape of data center networking by introducing an intent-based approach, over earlier configuration-centric architecture models. This opened the way for accelerated movement by enterprise data centers to meet their requirements for internal cloud deployments, new DevOps and serverless application models, and the extension of these to public clouds for hybrid operation – all within a single networking technology that uses familiar switching elements. Two new, software-defined artifacts make this possible in ACI: End-Point Groups (EPG) and Contracts – individual rules that define characteristics and behavior for an allowed network connection. ACI Is Great, NDO Is Global That’s really where NDO comes into the picture. By now, we have an ACI-driven data center networking infrastructure, with management redundancy for the availability of applications and preserving their intent characteristics. Through the use of an infrastructure built on EPGs and contracts, we can reach from the mobile and desktop to the datacenter and the cloud. This means our next barrier is the sharing of intent-based objects and management operations, beyond the confines of a single data center. We want to do this without clustering types, that depend on the availability risk of individual controllers, and hit other limits for availability and oversight. Instead of labor-intensive and error-prone duplication of data center networks and security in different regions, and for different zones of cloud operation, NDO introduces “stretched” shadow EPGs, and inter-site contracts, for application-centric and intent-based, secure traffic which is agnostic to global topologies – wherever your users and applications need to be. NDO Deployment Topology – Image: Cisco Getting NDO Together with AlgoSec: Policy-Driven, App-Centric Security Management  Having added NDO capability to the formidable shared platform of AlgoSec and Cisco ACI, regional-wide and global policy operations can be executed in confidence with intelligent automation. AlgoSec makes it possible to plan for operations of the Cisco NDO scope of connected fabrics in application-centric mode, unlocking the ACI super-powers for micro-segmentation. This enables a shared model between networking and security teams for zero-trust and defense-in-depth, with accelerated, global-scope, secure application changes at the speed of business demand — within minutes, rather than days or weeks. Change management : For security policy change management this means that workloads may be securely re-located from on-premises to public cloud, under a single and uniform network model and change-management framework — ensuring consistency across multiple clouds and hybrid environments. Visibility : With an NDO-enabled ACI networking infrastructure and AlgoSec’s ASMS, all connectivity can be visualized at multiple levels of detail, across an entire multi-vendor, multi-cloud network. This means that individual security risks can be directly correlated to the assets that are impacted, and a full understanding of the impact by security controls on an application’s availability. Risk and Compliance : It’s possible across all the NDO connected fabrics to identify risk on-premises and through the connected ACI cloud networks, including additional cloud-provider security controls. The AlgoSec solution makes this a self-documenting system for NDO, with detailed reporting and an audit trail of network security changes, related to original business and application requests. This means that you can generate automated compliance reports, supporting a wide range of global regulations, and your own, self-tailored policies. The Road Ahead Cisco NDO is a major technology and AlgoSec is in the early days with our feature introduction, nonetheless, we are delighted and enthusiastic about our early adoption customers. Based on early reports with our Cisco partners, needs will arise for more automation, which would include the “zero-touch” push for policy changes – committing Shadow EPG and Inter-site Contract changes to the orchestrator, as we currently do for ACI APIC. Feedback will also shape a need for automation playbooks and workflows that are most useful in the NDO context, and that we can realize with a full committable policy by the ASMS Firewall Analyzer. Contact Us! I encourage anyone interested in NDO and enhancing their operational maturity in aligned network and security operation, to talk to us about our joint solution. We work together with Cisco teams and resellers and will be glad to share more. Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • AlgoSec ISO/IEC 27001: 2022 Certificate - AlgoSec

    AlgoSec ISO/IEC 27001: 2022 Certificate Download PDF Schedule time with one of our experts Schedule time with one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Continue

  • AlgoSec | What is a Cloud Security Audit? (and How to Conduct One)

    Featured Snippet A cloud security audit is a review of an organization’s cloud security environment. During an audit, the security... Cloud Security What is a Cloud Security Audit? (and How to Conduct One) Rony Moshkovich 2 min read Rony Moshkovich Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 6/23/23 Published Featured Snippet A cloud security audit is a review of an organization’s cloud security environment. During an audit, the security auditor will gather information, perform tests, and confirm whether the security posture meets industry standards. PAA: What is the objective of a cloud security audit? The main objective of a cloud security audit is to evaluate the health of your cloud environment, including any data and applications hosted on the cloud. PAA: What are three key areas of auditing in the cloud? From the list of “6 Fundamental Steps of a Cloud Security Audit.” Inspect the security posture Determine the attack surface Implement strict access controls PAA: What are the two types of security audits? Security audits come in two forms: internal and external. In internal audits, a business uses its resources and employees to conduct the investigation. In external audits, a third-party organization is hired to conduct the audit. PAA: How do I become a cloud security auditor? To become a cloud security auditor, you need a certification like the Certificate of Cloud Security Knowledge (CCSK) or Certified Cloud Security Professional (CCSP). Prior experience in IT auditing, cloud security management, and cloud risk assessment is highly beneficial. Cloud environments are used to store over 60 percent of all corporate data as of 2022. With so much data in the cloud, organizations rely on cloud security audits to ensure that cloud services can safely provide on-demand access. In this article, we explain what a cloud security audit is, its main objectives, and its benefits. We’ve also listed the six crucial steps of a cloud audit and a checklist of example actions taken during an audit. What Is a Cloud Security Audit? A cloud security audit is a review of an organization’s cloud security environment . During an audit, the security auditor will gather information, perform tests, and confirm whether the security posture meets industry standards. Cloud service providers (CSPs) offer three main types of services: Software as a Service (SaaS) Infrastructure as a Service (IaaS) Platform as a Service (PaaS) Businesses use these solutions to store data and drive daily operations. A cloud security audit evaluates a CSP’s security and data protection measures. It can help identify and address any risks. The audit assesses how secure, dependable, and reliable a cloud environment is. Cloud audits are an essential data protection measure for companies that store and process data in the cloud. An audit assesses the security controls used by CSPs within the company’s cloud environment. It evaluates the effectiveness of the CSP’s security policies and technical safeguards. Auditors identify vulnerabilities, gaps, or noncompliance with regulations. Addressing these issues can prevent data breaches and exploitation via cybersecurity attacks. Meeting mandatory compliance standards will also prevent potentially expensive fines and being blacklisted. Once the technical investigation is complete, the auditor generates a report. This report states their findings and can have recommendations to optimize security. An audit can also help save money by finding unused or redundant resources in the cloud system. Main Objectives of a Cloud Security Audit The main objective of a cloud security audit is to evaluate the health of your cloud environment, including any data and applications hosted on the cloud. Other important objectives include: Decide the information architecture: Audits help define the network, security, and systems requirements to secure information. This includes data at rest and in transit. Align IT resources: A cloud audit can align the use of IT resources with business strategies. Identify risks: Businesses can identify risks that could harm their cloud environment. This could be security vulnerabilities, data access errors, and noncompliance with regulations. Optimize IT processes: An audit can help create documented, standardized, and repeatable processes, leading to a secure and reliable IT environment. This includes processes for system ownership, information security, network access, and risk management. Assess vendor security controls: Auditors can inspect the CSP’s security control frameworks and reliability. What Are the Two Types of Cloud Security Audits? Security audits come in two forms: internal and external. In internal audits, a business uses its resources and employees to conduct the investigation. In external audits, a third-party organization is hired to conduct the audit. The internal audit team reviews the organization’s cloud infrastructure and data. They aim to identify any vulnerabilities or compliance issues. A third-party auditor will do the same during an external audit. Both types of audits provide an objective assessment of the security posture . But internal audits are rare since there is a higher chance of prejudice during analysis. Who Provides Cloud Security Audits? Cloud security assessments are provided by: Third-party auditors: Independent third-party audit firms that specialize in auditing cloud ecosystems. These auditors are often certified and experienced in CSP security policies. They also use automated and manual security testing methods for a comprehensive evaluation. Some auditing firms extend remediation support after the audit. Cloud service providers: Some cloud platforms offer auditing services and tools. These tools vary in the depth of their assessments and the features they provide to fix problems. Internal audit teams: Many organizations use internal audit teams. These teams assess the controls and processes using CSPM tools . They provide recommendations for improving security and mitigating risks. Why Cloud Security Audits Are So Important Here are eight ways in which security audits of cloud services are performed: Identify security risks: An audit can identify potential security risks. This includes weaknesses in the cloud infrastructure, apps, APIs, or data. Recognizing and fixing these risks is critical for data protection. Ensure compliance: Audits help the cloud environment comply with regulations like HIPAA, PCI DSS, and ISO 27001. Compliance with these standards is vital for avoiding legal and financial penalties. Optimize cloud processes: An audit can help create efficient processes using fewer resources. There is also a decreased risk of breakdowns or malfunctions. Manage access control: Employees constantly change positions within the company or leave. With an audit, businesses can ensure that everyone has the right level of access. For example, access is completely removed for former employees. Auditing access control verifies if employees can safely log in to cloud systems. This is done via two-step authentication, multi-factor authentication, and VPNs. Assess third-party tools: Multi-vendor cloud systems include many third-party tools and API integrations. An audit of these tools and APIs can check if they are safe. It can also ensure that they do not compromise overall security. Avoid data loss: Audits help companies identify areas of potential data loss. This could be during transfer or backup or throughout different work processes. Patching these areas is vital for data safety. Check backup safety: Cloud vendors offer services to back up company data regularly. An audit of backup mechanisms can ensure they are performed at the right frequency and without any flaws. Proactive risk management: Organizations can address potential risks before they become major incidents. Taking proactive action can prevent data breaches, system failures, and other incidents that disrupt daily operations. Save money: Audits can help remove obsolete or underused resources in the cloud. Doing this saves money while improving performance. Improve cloud security posture: Like an IT audit, a cloud audit can help improve overall data confidentiality, integrity, and availability. How Is a Cloud Security Audit Conducted? The exact audit process varies depending on the specific goals and scope. Typically, an independent third party performs the audit. It inspects a cloud vendor’s security posture. It assesses how the CSP implements security best practices and whether it adheres to industry standards. It also evaluates performance against specific benchmarks set before the audit. Here is a general overview of the audit process: Define the scope: The first step is to define the scope of the audit. This includes listing the CSPs, security controls, processes, and regulations to be assessed. Plan the audit: The next step is to plan the audit. This involves establishing the audit team, a timeline, and an audit plan. This plan outlines the specific tasks to be performed and the evaluation criteria. Collect information: The auditor can collect information using various techniques. This includes analytics and security tools, physical inspections, questioning, and observation. Review and analyze: The auditor reviews all the information to evaluate the security posture. Create an audit report: An audit report summarizes findings and lists any issues. It is presented to company management at an audit briefing. The report also provides actions for improvement. Take action: Companies form a team to address issues in the audit report. This team performs remediation actions. The audit process could take 12 weeks to complete. However, it could take longer for businesses to complete the recommended remediation tasks. The schedule may be extended if a gap analysis is required. Businesses can speed up the audit process using automated security tools . This software quickly provides a unified view of all security risks across multiple cloud vendors. Some CSPs, like Amazon Web Services (AWS) and Microsoft Azure, also offer auditing tools. These tools are exclusive to each specific platform. The price of a cloud audit varies based on its scope, the size of the organization, and the number of cloud platforms. For example, auditing one vendor could take four or five weeks. But a complex web with multiple vendors could take more than 12 weeks. 6 Fundamental Steps of a Cloud Security Audit Six crucial steps must be performed in a cloud audit: 1. Evaluate security posture Evaluate the security posture of the cloud system . This includes security controls, policies, procedures, documentation, and incident response plans. The auditor can interview IT staff, cloud vendor staff, and other stakeholders to collect evidence about information systems. Screenshots and paperwork are also used as proof. After this process, the auditor analyzes the evidence. They check if existing procedures meet industry guidelines, like the ones provided by Cloud Security Alliance (CSA). 2. Define the attack surface An attack surface includes all possible points, or attack vectors, through which unauthorized users can access and exploit a system. Since cloud solutions are so complex, this can be challenging. Organizations must use cloud monitoring and observability technologies to determine the attack surface. They must also prioritize high-risk assets and focus their remediation efforts on them. Auditors must identify all the applications and assets running within cloud instances and containers. They must check if the organization approves these or if they represent shadow IT. To protect data, all workloads within the cloud system must be standardized and have up-to-date security measures. 3. Implement robust access controls Access management breaches are a widespread security risk. Unauthorized personnel can get credentials to access sensitive cloud data using various methods. To minimize security issues related to unauthorized access, organizations must: Create comprehensive password guidelines and policies Mandate multi-factor authentication (MFA) Use the Principle of Least Privilege Access (PoLP) Restrict administrative rights 4. Strict data sharing standards Organizations must install strong standards for external data access and sharing. These standards dictate how data is viewed and accessed in shared drives, calendars, and folders. Start with restrictive standards and then loosen up restrictions when necessary. External access should not be provided to files and folders containing sensitive data. This includes personally identifiable information (PII) and protected health information (PHI). 5. Use SIEM Security Information and Event Management (SIEM) systems can collect cloud logs in a standardized format. This allows editors to access logs and automatically generates reports necessary for different compliance standards. This helps organizations maintain compliance with industry security standards. 6. Automate patch management Regular security patches are crucial. However, many organizations and IT teams struggle with patch management. To create an efficient patch management process, organizations must: Focus on the most crucial patches first Regularly patch valuable assets using automation Add manual reviews to the automated patching process to ensure long-term security How Often Should Cloud Security Audits Be Conducted? As a general rule of thumb, audits are conducted annually or biannually. But an audit should also be performed when: Mandated by regulatory standards. For example, Level 1 businesses must pass at least one audit per year to remain PCI DSS compliant. There is a higher risk level. Organizations storing sensitive data may need more frequent audits. There are significant changes to the cloud environment. Ultimately, the frequency of audits depends on the organization’s specific needs. The Major Cloud Security Audit Challenges Here are some of the major challenges that organizations may face: Lack of visibility Cloud infrastructures can be complex with many services and applications across different providers. Each cloud vendor has their own security policies and practices. They also provide limited access to operational and forensic data required for auditing. This lack of transparency prevents auditors from accessing pertinent data. To gather all relevant data, IT operations staff must coordinate with CSPs. Auditors must also carefully choose test cases to avoid violating the CSP’s security policies. Encryption Data in the cloud is encrypted using two methods — internal or provider encryption. Internal or on-premise encryption is when organizations encrypt data before it is transferred to the cloud. Provider encryption is when the CSP handles encryption. With on-premise encryption, the primary threat comes from malicious internal actors. In the latter method, any security breach of the cloud provider’s network can harm your data. From an auditing standpoint, it is best to encrypt data and manage encryption keys internally. If the CSP handles the encryption keys, auditing becomes nearly impossible. Colocation Many cloud providers use the same physical systems for multiple user organizations. This increases the security risk. It also makes it challenging for auditors to inspect physical locations. Organizations should use cloud vendors that use mechanisms to prevent unauthorized data access. For example, a cloud vendor must prevent users from claiming administrative rights to the entire system. Lack of standardization Cloud environments have ever-increasing entities for auditors to inspect. This includes managed databases, physical hosts, virtual machines (VMs), and containers. Auditing all these entities can be difficult, especially when there are constant changes to the entities. Standardized procedures and workloads help auditors identify all critical entities within cloud systems. Cloud Security Audit Checklist Here is a cloud security audit checklist with example actions taken for each general control area: The above list is not all-inclusive. Each cloud environment and process involved in auditing it is different. Industry Standards To Guide Cloud Security Audits Industry groups have created security standards to help companies maintain their security posture. Here are the five most recognized standards for cloud compliance and auditing: CSA Security, Trust, & Assurance Registry (STAR): This is a security assurance program run by the CSA. The STAR program is built on three fundamental techniques: CSA’s Cloud Control Matrix (CCM) Consensus Assessments Initiative Questionnaire (CAIQ) CSA’s Code of Conduct for GDPR Compliance CSA also has a registry of CSPs who have completed a self-assessment of their security controls. The program includes guidelines that can be used for cloud audits. ISO/IEC 27017:2015: The ISO/IEC 27017:2015 are guidelines for information security controls in cloud computing environments. ISO/IEC 27018:2019: The ISO/IEC 27018:2019 provides guidelines for protecting PII in public cloud computing environments. MTCS SS 584: Multi-Tier Cloud Security (MTCS) SS 584 is a cloud security standard developed by the Infocomm Media Development Authority (IMDA) of Singapore. The standard has guidelines for CSPs on information security controls.Cloud customers and auditors can use it to evaluate the security posture of CSPs. CIS Foundations Benchmarks: The Center for Internet Security (CIS) Foundations Benchmarks are guidelines for securing IT systems and data. They help organizations of all sizes improve their security posture. Final Thoughts on Cloud Security Audits Cloud security audits are crucial for ensuring your cloud systems are secure and compliant. This is essential for data protection and preventing cybersecurity attacks. Auditors must use modern monitoring and CSPM tools like Prevasio to easily identify vulnerabilities in multi-vendor cloud environments. This software leads to faster audits and provides a unified view of all threats, making it easier to take relevant action. FAQs About Cloud Security Audits How do I become a cloud security auditor? To become a cloud security auditor, you need certification like the Certificate of Cloud Security Knowledge (CCSK) or Certified Cloud Security Professional (CCSP). Prior experience in IT auditing, cloud security management, and cloud risk assessment is highly beneficial. Other certifications like the Certificate of Cloud Auditing Knowledge (CCAK) by ISACA and CSA could also help. In addition, knowledge of security guidelines and compliance frameworks, including PCI DSS, ISO 27001, SOC 2, and NIST, is also required. Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

bottom of page