top of page

Search results

615 results found with an empty search

  • CSPM Tools

    Learn about how CSPM tools secure clouds, fix misconfigurations, and ensure compliance. CSPM Tools Select a size Which network Can AlgoSec be used for continuous compliance monitoring? Yes, AlgoSec supports continuous compliance monitoring. As organizations adapt their security policies to meet emerging threats and address new vulnerabilities, they must constantly verify these changes against the compliance frameworks they subscribe to. AlgoSec can generate risk assessment reports and conduct internal audits on-demand, allowing compliance officers to monitor compliance performance in real-time. Security professionals can also use AlgoSec to preview and simulate proposed changes to the organization’s security policies. This gives compliance officers a valuable degree of lead-time before planned changes impact regulatory guidelines and allows for continuous real-time monitoring. Cloud security posture management (CSPM) explained Cloud adoption is peaking. Firmly mission-critical, the cloud is every enterprise’s go-to for robust IT operations. However, with every passing year, cloud environments become increasingly ephemeral, dynamic, and maze-like. Today’s federated multi- and hybrid cloud architectures may serve as a business engine, but they’re stacked with novel security and compliance risks that can potentially undermine their benefits. Since these architectures are so intertwined and interconnected, the smallest of cloud misconfigurations can lead to exploitable vulnerabilities, visibility gaps, and noncompliance incidents. Furthermore, in multi-vendor setups, shared responsibility models can be hard to decipher, complicating remediation. Mitigating cloud misconfigurations demands a dedicated security solution for c loud security posture management (CSPM). Integrating CSPM tools into your broader multi-cloud security stack can reinforce security and help maximize cloud adoption and investments. What is cloud security posture management (CSPM)? Cloud security posture management involves the use of cloud security solutions purpose-built to detect and remediate cloud misconfigurations and vulnerabilities. As cloud architectures proliferate and shapeshift, CSPM tools: Provide complete and continuous visibility across critical assets and resources Support consistent policy enforcement Detect configuration errors and drift CSPM tools have become essential to maintaining a robust security and compliance posture. This is reflected in the global CSPM tools market , projected to hit $8.6 billion by 2027, a CAGR of more than 15%. The best CSPM tools do more than catch cloud misconfigurations after incidents occur. Instead, they proactively scour cloud environments and pinpoint potential threats via contextualized risk analysis. They ensure your cloud is always secure and resilient—not just in the aftermath of security events. How do CSPM tools work? CSPM tools continuously assess cloud environments for risks. By identifying and remediating cloud misconfigurations in real time, they are a key weapon in the multi-cloud security arsenal. Leading CSPM tools can perform the following security functions: Identify every single cloud asset and build a consolidated cloud asset inventory across disparate services and vendors Cross-analyze every item in a cloud asset inventory against configuration benchmarks and baselines to validate policy enforcement Proactively monitor cloud environments to identify and curb configuration drift Identify hybrid and multi-cloud security risks, misconfigurations, and vulnerabilities Employ contextualized risk analysis and cross-cloud correlation to ensure accurate risk prioritization and triage Offer automated remediation capabilities to mitigate cloud misconfigurations Provide continuous regulatory checks, compliance automation, and report generation for audits Below, we’ll discuss why these features are required in modern cloud ecosystems. Why CSPM tools are crucial for hybrid cloud and multi-cloud security Beyond knowing their core capabilities and how they operate, it’s important to understand why cloud security posture management solutions are non-negotiables in modern hybrid and multi-cloud environments. Complex cloud infrastructure Today, enterprise cloud setups are labyrinths, continuously increasing in complexity. According to Gartner , 9 out of 10 companies will have hybrid cloud architectures by 2027. The more complex cloud architectures are, the harder it becomes to achieve visibility, enforce policies, and prioritize risks. Generalist tools and legacy solutions will struggle to connect to these proliferating environments, making CSPM tools a pressing need. Proliferation of cloud misconfigurations With the proliferation of cloud environments comes the proliferation of cloud misconfigurations. Cloud misconfigurations include overprivileged identities, assets with weak credentials, and exposed storage buckets. Any of these exploitable cloud misconfigurations could result in major hybrid and multi-cloud security events. CSPM tools proactively address cloud misconfigurations, pruning the attack surface before incidents occur. Alert fatigue Handling security in dynamic cloud environments can be overwhelming. Security teams often suffer from alert fatigue, receiving alerts for hundreds of cloud misconfigurations without any way of knowing which ones are critical. Through contextualized risk analysis and accurate risk prioritization, CSPM tools surface the concerns that matter most. This context-based triage ensures that teams only receive alerts for high-risk cloud misconfigurations. Evolving regulatory requirements With new technologies like AI becoming business-critical, cloud regulations are evolving at unprecedented rates. Policy enforcement in accordance with criss-crossing compliance obligations becomes challenging, and reactive compliance strategies simply fail. CSPM tools, via automated compliance and stringent policy enforcement, help companies stay on top of today’s complicated regulatory landscape. Supply chain vulnerabilities Third-party risks are a major hybrid and multi-cloud security hurdle. The addition of numerous dependencies, APIs, and third-party components makes cloud environments susceptible to a wider range of cloud misconfigurations. Top CSPM tools shine a light on these serpentine supply chains, handing you the visibility needed to surface critical cloud misconfigurations, along with automated remediation and guidance to mitigate them. Recap: The benefits of robust CSPM tools Let’s review the advantages of commissioning a leading CSPM solution. Complete visibility: Unified, full-stack view of cloud resources, configurations, security controls, and policies Streamlined risk management: Proactive cloud evaluations, contextualized risk analysis, and automated remediation to diminish critical risks Stronger identity and access management: Continuous right-sizing of permissions across cloud identities, ensuring alignment with zero trust principles like least privilege Issue triage: Intelligent risk prioritization to escalate and mitigate only those cloud misconfigurations that are business-critical Fewer security incidents: Sustained mitigation of cloud misconfigurations, reducing exploitability and preventing escalation into data breaches and other major events Stronger compliance posture: Compliance automation to ensure that cloud configurations always align with regulatory baselines Business resilience and continuity: Accelerated remediation of critical cloud misconfigurations for stable IT operations Must-have features in CSPM tools When evaluating CSPM solutions, be on the lookout for the following non-negotiables. Feature Description Multi-cloud coverage Seamless interoperability and centralized policy enforcement, plus a unified view across AWS, Google Cloud, and Azure assets, data, firewall rules, and security groups Cloud asset inventory Comprehensive discovery and classification of every single resource across multi-cloud and hybrid cloud environments, including applications, networks, connectivity flows, data, serverless functions, and containerized workloads Cloud misconfiguration detection Continuous measurement of cloud settings against baselines and best practices to detect misconfigured assets, security vulnerabilities, and noncompliant resources Automated policy enforcement Intelligent automation to design, validate, and enforce cloud security policies without adding complexity or interrupting existing processes, tools, and workflows. Contextualized risk analysis + risk prioritization Intricate correlation to map cloud misconfigurations and network risks to business applications, enabling security teams to address risks based on asset criticality and actual threat exposure Automated remediation Automatic corrective mechanisms to fix cloud misconfigurations and remediation guidance for complex issues that require human intervention Compliance Automation Automated reporting and remediation to align policies, data practices, and cloud resources with regulations like GDPR, PCI DSS, and HIPAA, and prove adherence. DevSecOps and CI/CD integration Integrations with CI/CD pipelines and DevSecOps workflows to reinforce shift left strategies and prevent cloud misconfigurations from seeping into production The future of CSPM As hybrid and multi-cloud security needs increase in scope and scale, market and technology trends suggest that CSPM tools will evolve alongside or even ahead of cloud security complexities. For starters, we are already seeing CSPM innovations involving the integration of more advanced AI and ML capabilities. AI-driven CSPM tools will not only match the dynamism of contemporary cloud environments, but also feature higher levels of accuracy in detecting and triaging cloud misconfigurations. What does this mean? Security will become inherently predictive, with advanced ML algorithms improving contextualized risk analysis and risk prioritization by deriving insights faster and from a broader spectrum of telemetry. Lastly, the best CSPM tools will transcend silos and integrate with broader cloud network and application security platforms. In summary, the future of CSPM is set to bring even more advanced hybrid and multi-cloud security capabilities. The priority for companies should be making sure they commission a CSPM tool from a reputable provider at the forefront of these future trends. Prevasio: AlgoSec’s ultimate AI-powered CSPM Companies today require a CSPM tool with comprehensive and cutting-edge coverage. Cloud security posture management involves many moving parts. AlgoSec covers them all. AlgoSec’s AI-driven Prevasio platform features a robust CSPM component, complemented by a CNAPP, Kubernetes security, and IaC scanning. Like all of AlgoSec’s security offerings, Prevasio also has an application-centric edge, which is crucial considering applications constitute the majority of business-critical cloud assets. Prevasio CSPM’s standout attributes include: Complete multi-cloud coverage Zero blind spots Risk prioritization based on CIS benchmarks Continuous and customizable compliance monitoring Augmenting Prevasio’s CSPM capabilities are the AlgoSec Security Management Suite (ASMS) , with its flagship Firewall Analyzer , FireFlow , and AppViz , plus AlgoSec Cloud Enterprise (ACE), a network security solution built for today’s multi-cloud networks. How do ASMS and ACE further support CSPM? By providing: Automated policy enforcement and management Application-centric visibility and security Advanced network security coverage Contextualized risk analysis and mapping Comprehensive compliance management Together, AlgoSec’s ASMS, ACE, and Prevasio are all that an enterprise needs to tackle multi-cloud security challenges and reinforce cloud operations. How Prevasio elevates CSPM Businesses are rapidly scaling their cloud operations to remain competitive and boost their bottom line. However, the cloud is both an engine and a security vulnerability. Failure to address cloud misconfigurations can cancel out every one of the radical benefits it brings. Dialing in the CSPM component of multi-cloud security paves the path for robust cloud performance, both now and in the future. AlgoSec’s ASMS and ACE strengthen cloud application and network security, but Prevasio takes CSPM to the next level. From comprehensive cloud asset inventorying and automated remediation to compliance automation and CI/CD integration, Prevasio covers all CSPM bases. Want to see how Prevasio CSPM can boost your multi-cloud security program? Schedule a demo today. Get the latest insights from the experts Schedule time with one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Continue

  • AlgoSec | Mitigating cloud security risks through comprehensive automated solutions

    A recent news article from Bleeping Computer called out an incident involving Japanese game developer Ateam, in which a misconfiguration... Cyber Attacks & Incident Response Mitigating cloud security risks through comprehensive automated solutions Malynnda Littky-Porath 2 min read Malynnda Littky-Porath Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 1/8/24 Published A recent news article from Bleeping Computer called out an incident involving Japanese game developer Ateam, in which a misconfiguration in Google Drive led to the potential exposure of sensitive information for nearly one million individuals over a period of six years and eight months. Such incidents highlight the critical importance of securing cloud services to prevent data breaches. This blog post explores how organizations can avoid cloud security risks and ensuring the safety of sensitive information. What caused the Ateam Google Drive misconfiguration? Ateam, a renowned mobile game and content creator, discovered on November 21, 2023, that it had mistakenly set a Google Drive cloud storage instance to “Anyone on the internet with the link can view” since March 2017. This configuration error exposed 1,369 files containing personal information, including full names, email addresses, phone numbers, customer management numbers, and device identification numbers, for approximately 935,779 individuals. Avoiding cloud security risks by using automation To prevent such incidents and enhance cloud security, organizations can leverage tools such as AlgoSec, a comprehensive solution that addresses potential vulnerabilities and misconfigurations. It is important to look for cloud security partners who offer the following key features: Automated configuration checks: AlgoSec conducts automated checks on cloud configurations to identify and rectify any insecure settings. This ensures that sensitive data remains protected and inaccessible to unauthorized individuals. Policy compliance management: AlgoSec assists organizations in adhering to industry regulations and internal security policies by continuously monitoring cloud configurations. This proactive approach reduces the likelihood of accidental exposure of sensitive information. Risk assessment and mitigation: AlgoSec provides real-time risk assessments, allowing organizations to promptly identify and mitigate potential security risks. This proactive stance helps in preventing data breaches and maintaining the integrity of cloud services. Incident response capabilities: In the event of a misconfiguration or security incident, AlgoSec offers robust incident response capabilities. This includes rapid identification, containment, and resolution of security issues to minimize the impact on the organization. The Ateam incident serves as a stark reminder of the importance of securing cloud services to safeguard sensitive data. AlgoSec emerges as a valuable ally in this endeavor, offering automated configuration checks, policy compliance management, risk assessment, and incident response capabilities. By incorporating AlgoSec into their security strategy, organizations can significantly reduce the risk of cloud security incidents and ensure the confidentiality of their data. Request a brief demo to learn more about advanced cloud protection. Schedule a demo Related Articles 2025 in review: What innovations and milestones defined AlgoSec’s transformative year in 2025? AlgoSec Reviews Mar 19, 2023 · 2 min read Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • Secure application connectivity across your hybrid environment - AlgoSec

    Secure application connectivity across your hybrid environment E-BOOK Download PDF Schedule time with one of our experts Schedule time with one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Continue

  • AWS best practices - AlgoSec

    AWS best practices WhitePaper Download PDF Schedule time with one of our experts Schedule time with one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Continue

  • AlgoSec | Top Two Cloud Security Concepts You Won’t Want to Overlook

    Organizations transitioning to the cloud require robust security concepts to protect their most critical assets, including business... Cloud Security Top Two Cloud Security Concepts You Won’t Want to Overlook Rony Moshkovich 2 min read Rony Moshkovich Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 11/24/22 Published Organizations transitioning to the cloud require robust security concepts to protect their most critical assets, including business applications and sensitive data. Rony Moshkovitch, Prevasio’s co-founder, explains these concepts and why reinforcing a DevSecOps culture would help organizations strike the right balance between security and agility. In the post-COVID era, enterprise cloud adoption has grown rapidly. Per a 2022 security survey , over 98% of organizations use some form of cloud-based infrastructure. But 27% have also experienced a cloud security incident in the previous 12 months. So, what can organizations do to protect their critical business applications and sensitive data in the cloud? Why Consider Paved Road, Guardrails, and Least Privilege Access for Cloud Security It is in the organization’s best interest to allow developers to expedite the lifecycle of an application. At the same time, it’s the security teams’ job to facilitate this process in tandem with the developers to help them deliver a more secure application on time. As organizations migrate their applications and workloads to a multi-cloud platform, it’s incumbent to use a Shift left approach to DevSecOps. This enables security teams to build tools, and develop best practices and guidelines that enable the DevOps teams to effectively own the security process during the application development stage without spending time responding to risk and compliance violations issued by the security teams. This is where Paved Road, Guardrails and Least Privilege could add value to your DevSecOps. Concept 1: The Paved Road + Guardrails Approach Suppose your security team builds numerous tools, establishes best practices, and provides expert guidance. These resources enable your developers to use the cloud safely and protect all enterprise assets and data without spending all their time or energy on these tasks. They can achieve these objectives because the security team has built a “paved road” with strong “guardrails” for the entire organization to follow and adopt. By following and implementing good practices, such as building an asset inventory, creating safe templates, and conducting risk analyses for each cloud and cloud service, the security team enables developers to execute their own tasks quickly and safely. Security staff will implement strong controls that no one can violate or bypass. They will also clearly define a controlled exception process, so every exception is clearly tracked and accountability is always maintained. Over time, your organization may work with more cloud vendors and use more cloud services. In this expanding cloud landscape, the paved road and guardrails will allow users to do their jobs effectively in a security-controlled manner because security is already “baked in” to everything they work with. Moreover, they will be prevented from doing anything that may increase the organization’s risk of breaches, thus keeping you safe from the bad guys. How Paved Road Security and Guardrails Can Be Applied Successfully Example 1: Set Baked-in Security Controls Remember to bake security into reusable Terraform templates or AWS CloudFormation modules of paved roads. You may apply this tactic to provision new infrastructure, create new storage buckets, or adopt new cloud services. When you create a paved road and implement appropriate guardrails, all your golden modules and templates are already secure from the outset – safeguarding your assets and preventing undesirable security events. Example 2: Introducing Security Standardizations When creating resource functions with built-in security standards, developers should adhere to these standards to confidently configure required resources without introducing security issues into the cloud ecosystem. Example 3: Automating Security with Infrastructure as Code (IaC) IaC is a way to manage and provision new infrastructure by coding specifications instead of following manual processes. To create a paved road for IaC, the security team can introduce tagging to provision and track cloud resources. They can also incorporate strong security guardrails into the development environment to secure the new infrastructure right from the outset. Concept 2: The Principle of Least Privileged Access (PoLP) The Principle of Least Privilege Access (PoLP) is often synonymous with Zero Trust. PoLP is about ensuring that a user can only access the resources they need to complete a required task. The idea is to prevent the misuse of critical systems and data and reduce the attack surface to decrease the probability of breaches. How Can PoLP Be Applied Successfully Example 1: Ring-fencing critical assets This is the process of isolating specific “crown jewel” applications so that even if an attacker could make it into your environment, they would be unable to reach that data or application. As few people as possible would be given credentials that allow access, therefore following least privilege access rules. Crown jewel applications could be anything from where sensitive customer data is stored, to business-critical systems and processes. Example 2: Establishing Role Based Access Control (RABC) Based on the role that they hold at the company, RBAC or role-based access control allows specific access to certain data or applications, or parts of the network. This goes hand in hand with the principle of least privilege, and means that if credentials are stolen, the attackers are limited to what access the employee in question holds. As this is based on users, you could isolate privileged user sessions specifically to keep them with an extra layer of protection. Only if an administrator account or one with wide access privilege is stolen, would the business be in real trouble. Example 3: Isolate applications, tiers, users, or data This task is usually done with micro-segmentation, where specific applications, users, data, or any other element of the business is protected from an attack with internal, next-gen firewalls. Risk is reduced in a similar way to the examples above, where the requisite access needed is provided using the principle of least privilege to allow access to only those who need it, and no one else. In some situations, you might need to allow elevated privileges for a short period of time, for example during an emergency. Watch out for privilege creep, where users gain more access over time without any corrective oversight. Conclusion and Next Steps Paved Road, Guardrails and PoLP concepts are all essential for a strong cloud security posture. By adopting these concepts, your organization can move to the next stage of cloud security maturity and create a culture of security-minded responsibility at every level of the enterprise. The Prevasio cloud security platform allows you to apply these concepts across your entire cloud estate while securing your most critical applications. Schedule a demo Related Articles 2025 in review: What innovations and milestones defined AlgoSec’s transformative year in 2025? AlgoSec Reviews Mar 19, 2023 · 2 min read Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • AlgoSec | Sunburst Backdoor, Part II: DGA & The List of Victims

    Previous Part of the analysis is available here. Next Part of the analysis is available here. Update from 19 December 2020: ‍Prevasio... Cloud Security Sunburst Backdoor, Part II: DGA & The List of Victims Rony Moshkovich 2 min read Rony Moshkovich Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 12/17/20 Published Previous Part of the analysis is available here . Next Part of the analysis is available here . Update from 19 December 2020: Prevasio would like to thank Zetalytics for providing us with an updated (larger) list of passive (historic) DNS queries for the domains generated by the malware. As described in the first part of our analysis, the DGA (Domain Generation Algorithm) of the Sunburst backdoor produces a domain name that may look like: fivu4vjamve5vfrtn2huov[.]appsync-api.us-west-2[.]avsvmcloud[.]com The first part of the domain name (before the first dot) consists of a 16-character random string, appended with an encoded computer’s domain name. This is the domain in which the local computer is registered. From the example string above, we can conclude that the encoded computer’s domain starts from the 17th character and up until the dot (highlighted in yellow): fivu4vjamve5vfrt n2huov In order to encode a local computer’s domain name, the malware uses one of 2 simple methods: Method 1 : a substitution table, if the domain name consists of small letters, digits, or special characters ‘-‘, ‘_’, ‘.’ Method 2 : base64 with a custom alphabet, in case of capital letters present in the domain name Method 1 In our example, the encoded domain name is “n2huov” . As it does not have any capital letters, the malware encodes it with a substitution table “rq3gsalt6u1iyfzop572d49bnx8cvmkewhj” . For each character in the domain name, the encoder replaces it with a character located in the substitution table four characters right from the original character. In order to decode the name back, all we have to do is to replace each encoded character with another character, located in the substitution table four characters left from the original character. To illustrate this method, imagine that the original substitution table is printed on a paper strip and then covered with a card with 6 perforated windows. Above each window, there is a sticker note with a number on it, to reflect the order of characters in the word “n2huov” , where ‘n’ is #1, ‘2’ is #2, ‘h’ is #3 and so on: Once the paper strip is pulled by 4 characters right, the perforated windows will reveal a different word underneath the card: “domain” , where ‘d’ is #1, ‘o’ is #2, ‘m’ is #3, etc.: A special case is reserved for such characters as ‘0’ , ‘-‘ , ‘_’ , ‘.’ . These characters are encoded with ‘0’ , followed with a character from the substitution table. An index of that character in the substitution table, divided by 4, provides an index within the string “0_-.” . The following snippet in C# illustrates how an encoded string can be decoded: static string decode_domain( string s) { string table = "rq3gsalt6u1iyfzop572d49bnx8cvmkewhj" ; string result = "" ; for ( int i = 0 ; i < s.Length; i++) { if (s[i] != '0' ) { result += table[(table.IndexOf(s[i]) + table.Length - 4 ) % table.Length]; } else { if (i < s.Length - 1 ) { if (table.Contains(s[i + 1 ])) { result += "0_-." [table.IndexOf(s[i + 1 ]) % 4 ]; } else { break ; } } i++; } } return result; } Method 2 This method is a standard base64 encoder with a custom alphabet “ph2eifo3n5utg1j8d94qrvbmk0sal76c” . Here is a snippet in C# that provides a decoder: public static string FromBase32String( string str) { string table = "ph2eifo3n5utg1j8d94qrvbmk0sal76c" ; int numBytes = str.Length * 5 / 8 ; byte [] bytes = new Byte[numBytes]; int bit_buffer; int currentCharIndex; int bits_in_buffer; if (str.Length < 3 ) { bytes[ 0 ] = ( byte )(table.IndexOf(str[ 0 ]) | table.IndexOf(str[ 1 ]) << 5 ); return System.Text.Encoding.UTF8.GetString(bytes); } bit_buffer = (table.IndexOf(str[ 0 ]) | table.IndexOf(str[ 1 ]) << 5 ); bits_in_buffer = 10 ; currentCharIndex = 2 ; for ( int i = 0 ; i < bytes.Length; i++) { bytes[i] = ( byte )bit_buffer; bit_buffer >>= 8 ; bits_in_buffer -= 8 ; while (bits_in_buffer < 8 && currentCharIndex < str.Length) { bit_buffer |= table.IndexOf(str[currentCharIndex++]) << bits_in_buffer; bits_in_buffer += 5 ; } } return System.Text.Encoding.UTF8.GetString(bytes); } When the malware encodes a domain using Method 2, it prepends the encrypted string with a double zero character: “00” . Following that, extracting a domain part of an encoded domain name (long form) is as simple as: static string get_domain_part( string s) { int i = s.IndexOf( ".appsync-api" ); if (i > 0 ) { s = s.Substring( 0 , i); if (s.Length > 16 ) { return s.Substring( 16 ); } } return "" ; } Once the domain part is extracted, the decoded domain name can be obtained by using Method 1 or Method 2, as explained above: if (domain.StartsWith( "00" )) { decoded = FromBase32String(domain.Substring( 2 )); } else { decoded = decode_domain(domain); } Decrypting the Victims’ Domain Names To see the decoder in action, let’s select 2 lists: List #1 Bambenek Consulting has provided a list of observed hostnames for the DGA domain. List #2 The second list has surfaced in a Paste bin paste , allegedly sourced from Zetalytics / Zonecruncher . NOTE: This list is fairly ‘noisy’, as it has non-decodable domain names. By feeding both lists to our decoder, we can now obtain a list of decoded domains, that could have been generated by the victims of the Sunburst backdoor. DISCLAIMER: It is not clear if the provided lists contain valid domain names that indeed belong to the victims. It is quite possible that the encoded domain names were produced by third-party tools, sandboxes, or by researchers that investigated and analysed the backdoor. The decoded domain names are provided purely as a reverse engineering exercise. The resulting list was manually processed to eliminate noise, and to exclude duplicate entries. Following that, we have made an attempt to map the obtained domain names to the company names, using Google search. Reader’s discretion is advised as such mappings could be inaccurate. Decoded Domain Mapping (Could Be Inaccurate) hgvc.com Hilton Grand Vacations Amerisaf AMERISAFE, Inc. kcpl.com Kansas City Power and Light Company SFBALLET San Francisco Ballet scif.com State Compensation Insurance Fund LOGOSTEC Logostec Ventilação Industrial ARYZTA.C ARYZTA Food Solutions bmrn.com BioMarin Pharmaceutical Inc. AHCCCS.S Arizona Health Care Cost Containment System nnge.org Next Generation Global Education cree.com Cree, Inc (semiconductor products) calsb.org The State Bar of California rbe.sk.ca Regina Public Schools cisco.com Cisco Systems pcsco.com Professional Computer Systems barrie.ca City of Barrie ripta.com Rhode Island Public Transit Authority uncity.dk UN City (Building in Denmark) bisco.int Boambee Industrial Supplies (Bisco) haifa.edu University of Haifa smsnet.pl SMSNET, Poland fcmat.org Fiscal Crisis and Management Assistance Team wiley.com Wiley (publishing) ciena.com Ciena (networking systems) belkin.com Belkin spsd.sk.ca Saskatoon Public Schools pqcorp.com PQ Corporation ftfcu.corp First Tech Federal Credit Union bop.com.pk The Bank of Punjab nvidia.com NVidia insead.org INSEAD (non-profit, private university) usd373.org Newton Public Schools agloan.ads American AgCredit pageaz.gov City of Page jarvis.lab Erich Jarvis Lab ch2news.tv Channel 2 (Israeli TV channel) bgeltd.com Bradford / Hammacher Remote Support Software dsh.ca.gov California Department of State Hospitals dotcomm.org Douglas Omaha Technology Commission sc.pima.gov Arizona Superior Court in Pima County itps.uk.net IT Professional Services, UK moncton.loc City of Moncton acmedctr.ad Alameda Health System csci-va.com Computer Systems Center Incorporated keyano.local Keyano College uis.kent.edu Kent State University alm.brand.dk Sydbank Group (Banking, Denmark) ironform.com Ironform (metal fabrication) corp.ncr.com NCR Corporation ap.serco.com Serco Asia Pacific int.sap.corp SAP mmhs-fla.org Cleveland Clinic Martin Health nswhealth.net NSW Health mixonhill.com Mixon Hill (intelligent transportation systems) bcofsa.com.ar Banco de Formosa ci.dublin.ca. Dublin, City in California siskiyous.edu College of the Siskiyous weioffice.com Walton Family Foundation ecobank.group Ecobank Group (Africa) corp.sana.com Sana Biotechnology med.ds.osd.mi US Gov Information System wz.hasbro.com Hasbro (Toy company) its.iastate.ed Iowa State University amr.corp.intel Intel cds.capilanou. Capilano University e-idsolutions. IDSolutions (video conferencing) helixwater.org Helix Water District detmir-group.r Detsky Mir (Russian children’s retailer) int.lukoil-int LUKOIL (Oil and gas company, Russia) ad.azarthritis Arizona Arthritis and Rheumatology Associates net.vestfor.dk Vestforbrænding allegronet.co. Allegronet (Cloud based services, Israel) us.deloitte.co Deloitte central.pima.g Pima County Government city.kingston. City of Kingston staff.technion Technion – Israel Institute of Technology airquality.org Sacramento Metropolitan Air Quality Management District phabahamas.org Public Hospitals Authority, Caribbean parametrix.com Parametrix (Engineering) ad.checkpoint. Check Point corp.riotinto. Rio Tinto (Mining company, Australia) intra.rakuten. Rakuten us.rwbaird.com Robert W. Baird & Co. (Financial services) ville.terrebonn Ville de Terrebonne woodruff-sawyer Woodruff-Sawyer & Co., Inc. fisherbartoninc Fisher Barton Group banccentral.com BancCentral Financial Services Corp. taylorfarms.com Taylor Fresh Foods neophotonics.co NeoPhotonics (optoelectronic devices) gloucesterva.ne Gloucester County magnoliaisd.loc Magnolia Independent School District zippertubing.co Zippertubing (Manufacturing) milledgeville.l Milledgeville (City in Georgia) digitalreachinc Digital Reach, Inc. deniz.denizbank DenizBank thoughtspot.int ThoughtSpot (Business intelligence) lufkintexas.net Lufkin (City in Texas) digitalsense.co Digital Sense (Cloud Services) wrbaustralia.ad W. R. Berkley Insurance Australia christieclinic. Christie Clinic Telehealth signaturebank.l Signature Bank dufferincounty. Dufferin County mountsinai.hosp Mount Sinai Hospital securview.local Securview Victory (Video Interface technology) weber-kunststof Weber Kunststoftechniek parentpay.local ParentPay (Cashless Payments) europapier.inte Europapier International AG molsoncoors.com Molson Coors Beverage Company fujitsugeneral. Fujitsu General cityofsacramento City of Sacramento ninewellshospita Ninewells Hospital fortsmithlibrary Fort Smith Public Library dokkenengineerin Dokken Engineering vantagedatacente Vantage Data Centers friendshipstateb Friendship State Bank clinicasierravis Clinica Sierra Vista ftsillapachecasi Apache Casino Hotel voceracommunicat Vocera (clinical communications) mutualofomahabanMutual of Omaha Bank Schedule a demo Related Articles 2025 in review: What innovations and milestones defined AlgoSec’s transformative year in 2025? AlgoSec Reviews Mar 19, 2023 · 2 min read Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • Regulations and compliance for the data center – A Day in the Life - AlgoSec

    Regulations and compliance for the data center – A Day in the Life Download PDF Schedule time with one of our experts Schedule time with one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Continue

  • AlgoSec | How to Perform a Network Security Risk Assessment in 6 Steps

    For your organization to implement robust security policies, it must have clear information on the security risks it is exposed to. An... Uncategorized How to Perform a Network Security Risk Assessment in 6 Steps Tsippi Dach 2 min read Tsippi Dach Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 1/18/24 Published For your organization to implement robust security policies, it must have clear information on the security risks it is exposed to. An effective IT security plan must take the organization’s unique set of systems and technologies into account. This helps security professionals decide where to deploy limited resources for improving security processes. Cybersecurity risk assessments provide clear, actionable data about the quality and success of the organization’s current security measures. They offer insight into the potential impact of security threats across the entire organization, giving security leaders the information they need to manage risk more effectively. Conducting a comprehensive cyber risk assessment can help you improve your organization’s security posture, address security-related production bottlenecks in business operations, and make sure security team budgets are wisely spent. This kind of assessment is also a vital step in the compliance process . Organizations must undergo information security risk assessments in order to meet regulatory requirements set by different authorities and frameworks, including: The Health Insurance Portability and Accountability Act (HIPAA), The International Organization for Standardization (ISO) The National Institute of Standards and Technology (NIST) Cybersecurity Framework The Payment Card Industry Data Security Standard (PCI DSS) General Data Protection Regulation (GDPR) What is a Security Risk Assessment? Your organization’s security risk assessment is a formal document that identifies, evaluates, and prioritizes cyber threats according to their potential impact on business operations. Categorizing threats this way allows cybersecurity leaders to manage the risk level associated with them in a proactive, strategic way. The assessment provides valuable data about vulnerabilities in business systems and the likelihood of cyber attacks against those systems. It also provides context into mitigation strategies for identified risks, which helps security leaders make informed decisions during the risk management process. For example, a security risk assessment may find that the organization needs to be more reliant on its firewalls and access control solutions . If a threat actor uses phishing or social engineering to bypass these defenses (or take control of them entirely), the entire organization could suffer a catastrophic data breach. In this case, the assessment may recommend investing in penetration testing and advanced incident response capabilities. Organizations that neglect to invest in network security risk assessments won’t know their weaknesses until after they are actively exploited. By the time hackers launch a ransomware attack, it’s too late to consider whether your antivirus systems are properly configured against malware. Who Should Perform Your Organization’s Cyber Risk Assessment? A dedicated internal team should take ownership over the risk assessment process . The process will require technical personnel with a deep understanding of the organization’s IT infrastructure. Executive stakeholders should also be involved because they understand how information flows in the context of the organization’s business logic, and can provide broad insight into its risk management strategy . Small businesses may not have the resources necessary to conduct a comprehensive risk analysis internally. While a variety of assessment tools and solutions are available on the market, partnering with a reputable managed security service provider is the best way to ensure an accurate outcome. Adhering to a consistent methodology is vital, and experienced vulnerability assessment professionals ensure the best results. How to Conduct a Network Security Risk Assessment 1. Develop a comprehensive asset map The first step is accurately mapping out your organization’s network assets. If you don’t have a clear idea of exactly what systems, tools, and applications the organization uses, you won’t be able to manage the risks associated with them. Keep in mind that human user accounts should be counted as assets as well. The Verizon 2023 Data Breach Investigation Report shows that the human element is involved in more than a quarter of all data breaches. The better you understand your organization’s human users and their privilege profiles, the more effectively you can protect them from potential threats and secure critical assets effectively. Ideally, all of your organization’s users should be assigned and managed through a centralized system. For Windows-based networks, Active Directory is usually the solution that comes to mind. Your organization may have a different system in place if it uses a different operating system. Also, don’t forget about information assets like trade secrets and intellectual property. Cybercriminals may target these assets in order to extort the organization. Your asset map should show you exactly where these critical assets are stored, and provide context into which users have permission to access them. Log and track every single asset in a central database that you can quickly access and easily update. Assign security value to each asset as you go and categorize them by access level . Here’s an example of how you might want to structure that categorization: Public data. This is data you’ve intentionally made available to the public. It includes web page content, marketing brochures, and any other information of no consequence in a data breach scenario. Confidential data. This data is not publicly available. If the organization shares it with third parties, it is only under a non-disclosure agreement. Sensitive technical or financial information may end up in this category. Internal use only. This term refers to data that is not allowed outside the company, even under non-disclosure terms. It might include employee pay structures, long-term strategy documents, or product research data. Intellectual property. Any trade secrets, issued patents, or copyrighted assets are intellectual property. The value of the organization depends in some way on this information remaining confidential. Compliance restricted data. This category includes any data that is protected by regulatory or legal obligations. For a HIPAA-compliant organization, that would include patient data, medical histories, and protected personal information. This database will be one of the most important security assessment tools you use throughout the next seven steps. 2. Identify security threats and vulnerabilities Once you have a comprehensive asset inventory, you can begin identifying risks and vulnerabilities for each asset. There are many different types of tests and risk assessment tools you can use for this step. Automating the process whenever possible is highly recommended, since it may otherwise become a lengthy and time-consuming manual task. Vulnerability scanning tools can automatically assess your network and applications for vulnerabilities associated with known threats. The scan’s results will tell you exactly what kinds of threats your information systems are susceptible to, and provide some information about how you can remediate them. Be aware that these scans can only determine your vulnerability to known threats. They won’t detect insider threats , zero-day vulnerabilities and some scanners may overlook security tool misconfigurations that attackers can take advantage of. You may also wish to conduct a security gap analysis. This will provide you with comprehensive information about how your current security program compares to an established standard like CMMC or PCI DSS. This won’t help protect against zero-day threats, but it can uncover information security management problems and misconfigurations that would otherwise go unnoticed. To take this step to the next level, you can conduct penetration testing against the systems and assets your organization uses. This will validate vulnerability scan and gap analysis data while potentially uncovering unknown vulnerabilities in the process. Pentesting replicates real attacks on your systems, providing deep insight into just how feasible those attacks may be from a threat actor’s perspective. When assessing the different risks your organization faces, try to answer the following questions: What is the most likely business outcome associated with this risk? Will the impact of this risk include permanent damage, like destroyed data? Would your organization be subject to fines for compliance violations associated with this risk? Could your organization face additional legal liabilities if someone exploited this risk? 3. Prioritize risks according to severity and likelihood Once you’ve conducted vulnerability scans and assessed the different risks that could impact your organization, you will be left with a long list of potential threats. This list will include more risks and hazards than you could possibly address all at once. The next step is to go through the list and prioritize each risk according to its potential impact and how likely it is to happen. If you implemented penetration testing in the previous step, you should have precise data on how likely certain attacks are to take place. Your team will tell you how many steps they took to compromise confidential data, which authentication systems they had to bypass, and what other security functionalities they disabled. Every additional step reduces the likelihood of a cybercriminal carrying out the attack successfully. If you do not implement penetration testing, you will have to conduct an audit to assess the likelihood of attackers exploiting your organization’s vulnerabilities. Industry-wide threat intelligence data can give you an idea of how frequent certain types of attacks are. During this step, you’ll have to balance the likelihood of exploitation with the severity of the potential impact for each risk. This will require research into the remediation costs associated with many cyberattacks. Remediation costs should include business impact – such as downtime, legal liabilities, and reputational damage – as well as the cost of paying employees to carry out remediation tasks. Assigning internal IT employees to remediation tasks implies the opportunity cost of diverting them from their usual responsibilities. The more completely you assess these costs, the more accurate your assessment will be. 4. Develop security controls in response to risks Now that you have a comprehensive overview of the risks your organization is exposed to, you can begin developing security controls to address them. These controls should provide visibility and functionality to your security processes, allowing you to prevent attackers from exploiting your information systems and detect them when they make an attempt. There are three main types of security control available to the typical organization: Physical controls prevent unauthorized access to sensitive locations and hardware assets. Security cameras, door locks, and live guards all contribute to physical security. These controls prevent external attacks from taking place on premises. Administrative controls are policies, practices, and workflows that secure business assets and provide visibility into workplace processes. These are vital for protecting against credential-based attacks and malicious insiders. Technical controls include purpose-built security tools like hardware firewalls, encrypted data storage solutions, and antivirus software. Depending on their configuration, these controls can address almost any type of threat. These categories have further sub-categories that describe how the control interacts with the threat it is protecting against. Most controls protect against more than one type of risk, and many controls will protect against different risks in different ways. Here are some of the functions of different controls that you should keep in mind: Detection-based controls trigger alerts when they discover unauthorized activity happening on the network. Intrusion detection systems (IDS) and security information and event management (SIEM) platforms are examples of detection-based solutions. When you configure one of these systems to detect a known risk, you are implementing a detection-based technical control. Prevention-based controls block unauthorized activity from taking place altogether. Authentication protocols and firewall rules are common examples of prevention-based security controls. When you update your organization’s password policy, you are implementing a prevention-based administrative control. Correction and compensation-based controls focus on remediating the effects of cyberattacks once they occur. Disaster recovery systems and business continuity solutions are examples. When you copy a backup database to an on-premises server, you are establishing physical compensation-based controls that will help you recover from potential threats. 5. Document the results and create a remediation plan Once you’ve assessed your organization’s exposure to different risks and developed security controls to address those risks, you are ready to condense them into a cohesive remediation plan . You will use the data you’ve gathered so far to justify the recommendations you make, so it’s a good idea to present that data visually. Consider creating a risk matrix to show how individual risks compare to one another based on their severity and likelihood. High-impact risks that have a high likelihood of occurring should draw more time and attention than risks that are either low-impact, unlikely, or both. Your remediation plan will document the steps that security teams will need to take when responding to each incident you describe. If multiple options exist for a particular vulnerability, you may add a cost/benefit analysis of multiple approaches. This should provide you with an accurate way to quantify the cost of certain cyberattacks and provide a comparative cost for implementing controls against that type of attack. Comparing the cost of remediation with the cost of implementing controls should show some obvious options for cybersecurity investment. It’s easy to make the case for securing against high-severity, high-likelihood attacks with high remediation costs and low control costs. Implementing security patches is an example of this kind of security control that costs very little but provides a great deal of value in this context. Depending on your organization’s security risk profile, you may uncover other opportunities to improve security quickly. You will probably also find opportunities that are more difficult or expensive to carry out. You will have to pitch these opportunities to stakeholders and make the case for their approval. 6. Implement recommendations and evaluate the effectiveness of your assessment Once you have approval to implement your recommendations, it’s time for action. Your security team can now assign each item in the remediation plan to the team member responsible and oversee their completion. Be sure to allow a realistic time frame for each step in the process to be completed – especially if your team is not actively executing every task on its own. You should also include steps for monitoring the effectiveness of their efforts and documenting the changes they make to your security posture. This will provide you with key performance metrics that you can compare with future network security assessments moving forward, and help you demonstrate the value of your remediation efforts overall. Once you have implemented the recommendations, you can monitor and optimize the performance of your information systems to ensure your security posture adapts to new threats as they emerge. Risk assessments are not static processes, and you should be prepared to conduct internal audits and simulate the impact of configuration changes on your current deployment. You may wish to repeat your risk evaluation and gap analysis step to find out how much your organization’s security posture has changed. You can use automated tools like AlgoSec to conduct configuration simulations and optimize the way your network responds to new and emerging threats. Investing time and energy into these tasks now will lessen the burden of your next network security risk assessment and make it easier for you to gain approval for the recommendations you make in the future. Schedule a demo Related Articles 2025 in review: What innovations and milestones defined AlgoSec’s transformative year in 2025? AlgoSec Reviews Mar 19, 2023 · 2 min read Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • AlgoSec and Cisco Meraki - AlgoSec

    AlgoSec and Cisco Meraki Solution Brief Download PDF Schedule time with one of our experts Schedule time with one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Continue

  • Fortifying cloud security and HIPAA compliance for a global health services company - AlgoSec

    Fortifying cloud security and HIPAA compliance for a global health services company Case Study Download PDF Schedule time with one of our experts Schedule time with one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Continue

  • AlgoSec Wins Two Cisco Partnership Awards, Recognizing the Value for Securing Application Connectivity Across Hybrid Networks

    Cisco awards AlgoSec with EMEA Co-Sell Partner of the Year and Cisco Meraki Marketplace Tech Partner of the Month based on the company’s continued innovation and dedication to application security AlgoSec Wins Two Cisco Partnership Awards, Recognizing the Value for Securing Application Connectivity Across Hybrid Networks Cisco awards AlgoSec with EMEA Co-Sell Partner of the Year and Cisco Meraki Marketplace Tech Partner of the Month based on the company’s continued innovation and dedication to application security November 20, 2024 Speak to one of our experts RIDGEFIELD PARK, NJ, November 20, 2024 – Global cybersecurity leader AlgoSec announced it was named November 2024’s Cisco Meraki Marketplace Tech Partner of the Month. AlgoSec received the award for its Secure Application Connectivity platform, which transforms network security policy management by intelligently automating and orchestrating security change processes. Cisco’s cloud-managed Meraki platform enables users to centrally manage and configure security solutions, bridging the gap between hardware and the cloud to deliver a high-performance network. When integrated with AlgoSec’s secure application connectivity platform, joint customers can achieve holistic visibility across their Cisco and multivendor network, expedite security policy changes, reduce risks, prevent outages and ensure continuous compliance. “We are thrilled to be recognized as a value-added partner by Cisco,” said Reinhard Eichborn , Director of Strategic Alliances at AlgoSec. “In the current security landscape, embracing automation to eliminate human errors, misconfigurations and prolonged outages is vital. Our partnership with Cisco enables us to do this by giving customers a holistic view of how applications operate within their network, removing the need for manual monitoring and data processing. It’s a single source of truth for application security management that helps sustain business-critical operations and limit the threat of a potential data breach." AlgoSec has been recognized by winning Cisco’s Co-Sell Partner of the Year EMEA award for its collaborative efforts to jointly market and sell complementary solutions alongside Cisco to allow joint customers to secure their complex networks by focusing on the applications that run their businesses. The dynamic partnership focuses on improving visibility, automating application connectivity changes and easily discovering and managing risks by integrating the AlgoSec platform with Cisco’s network solutions. The awards program honors top-performing partners that have introduced innovative processes, seized new opportunities and adopted sales approaches that achieve substantial business outcomes for customers. In today’s threat environment, innovative security measures that prioritize security at the application level have become essential. Further underscoring AlgoSec’s commitment to application security, the company was recently recognized by Cyber Defense Magazine’s Top InfoSec Innovator 2024 awards as a winner in the Hot Company Application Security and Most Innovative Network Security and Management categories. The program awards companies that demonstrate understanding of tomorrow’s threats, today, providing a cost-effective solution and innovating in unexpected ways that can help mitigate cyber risk and get one step ahead of the next breach. To find out more visit https://www.algosec.com/cisco-algosec/ . About AlgoSec AlgoSec, a global cybersecurity leader, empowers organizations to secure application connectivity and cloud-native applications throughout their multi-cloud and hybrid network. Trusted by more than 1,800 of the world’s leading organizations, AlgoSec’s application-centric approach enables secure acceleration of business application deployment by centrally managing application connectivity and security policies across the public clouds, private clouds, containers, and on-premises networks. Using its unique vendor-agnostic deep algorithm for intelligent change management automation, AlgoSec enables the acceleration of digital transformation projects, helps prevent business application downtime and substantially reduces manual work and exposure to security risks. AlgoSec’s policy management and CNAPP platforms provide a single source for visibility into security and compliance issues within cloud-native applications as well as across the hybrid network environment, to ensure ongoing adherence to internet security standards, industry, and internal regulations. Learn how AlgoSec enables application owners, information security experts, DevSecOps and cloud security teams to deploy business applications up to 10 times faster while maintaining security at https://www.algosec.com . 

  • AlgoSec | AlgoSec and Zero-Trust for Healthcare

    Before I became a Sale Engineer I started my career working in operations and I don’t remember the first time I heard the term zero trust... Zero Trust AlgoSec and Zero-Trust for Healthcare Adolfo Lopez 2 min read Adolfo Lopez Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 2/26/24 Published Before I became a Sale Engineer I started my career working in operations and I don’t remember the first time I heard the term zero trust but I all I knew is that it was very important and everyone was striving to get to that level of security. Today I’ll get into how AlgoSec can help achieve those goals, but first let’s have a quick recap on what zero trust is in the first place. There are countless whitepapers and frameworks that define zero trust much better than I can, but they are also multiple pages long, so I’ll do a quick recap. Traditionally when designing a network you may have different zones and each zone might have different levels of access. In many of these types of designs there is a lot of trust that is given once they are in a certain zone. For example, once someone gets to their workplace at the hospital, the nursing home, the dental center or any other medical office and does all the necessary authentication steps (proper company laptop, credentials, etc…) they potentially have free reign to everything. This is a very simple example and in a real-world scenario there would hopefully be many more safeguards in place. But what does happen in real world scenarios is that devices still manage to get trusted more than they should. And from my own experience and from working with customers this happens way too often. Especially in the healthcare industry this is becoming more and more important. These days there are many different types of medical devices, some that hold sensitive information, some scanning instruments, and some that might even be critical to patient support. More importantly many are connected to some type of network. Because of this level of connectivity, we do need to start shifting toward this idea of zero trust. In healthcare cybersecurity isn’t just a matter of maintaining the network, it’s about maintaining the critical operations of the hospitals running smoothly and patient data safe and secure. Maintaining security policies is critical to achieving zero trust. Below you can see some of the key features that AlgoSec has that can help achieve that goal. Feature Description Security Policy Analysis Analyze existing security policy sets across all parts of the network (on-premises and cloud) with various vendors. Policy Cleanup Identify and remove redundant rules, duplicate rules, and more from the first report. Specific Recommendations Over time, recommendations become more specific, such as identifying unnecessary rules (e.g., a printer talking to a medical device without actual use). Application Perspective Tie firewall rules to actual applications to understand the business function they support, leading to more targeted security policies. Granularity & Visibility Higher level of visibility and granularity in security policies, focusing on specific application flows rather than broad network access. Security Posture by Application View and assess security risks and vulnerabilities at the application level, improving overall security posture. One of my favorite aspects of the AlgoSec platform is that we not only help optimize your security policies, but we also start to look at security from an application perspective. Traditionally, firewall change requests come in and it’s just asking for very specific things, “Source A to Destination B using Protocol C.” But using AlgoSec we tie those rules to actual applications to see what business function this is supporting. By knowing the specific flows and tying them to a specific application this allows us to keep a closer eye on the actual security policies we need to create. This helps with that zero trust journey because having that higher level of visibility and granularity helps to keep the rules more specific. Instead of a change request coming in that is allowing wide open access between two subnets the application can be designed for only the access that is required. It also allows for an overall better view of the security posture. Zero trust, like many other ideas and frameworks in our industry might seem farfetched at first. We ask ourselves, how do we get there or how do we implement without it becoming so cumbersome that we give up on it. I think it’s normal to be a bit pessimistic about achieving the goal and it’s completely fine to look at some projects as moving targets that we might not have a hard deadline on. There usually isn’t a magic bullet that accomplish our goals, especially something like achieving zero trust. Multiple initiatives and projects are necessary. With AlgoSec’s expertise in application connectivity and policy management, we can be a key partner in that journey. Schedule a demo Related Articles 2025 in review: What innovations and milestones defined AlgoSec’s transformative year in 2025? AlgoSec Reviews Mar 19, 2023 · 2 min read Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

bottom of page