

Search results
615 results found with an empty search
- Fortinet algosec security management suite - AlgoSec
Fortinet algosec security management suite Download PDF Schedule time with one of our experts Schedule time with one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Continue
- AlgoSec Horizon Platform Solution brief - AlgoSec
AlgoSec Horizon Platform Solution brief Download PDF Schedule time with one of our experts Schedule time with one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Continue
- AlgoSec | Hybrid network security: Azure Firewall and AlgoSec solutions
In today’s dynamic digital landscape, the security of hybrid networks has taken center stage. As organizations increasingly adopt cloud... Hybrid Cloud Security Management Hybrid network security: Azure Firewall and AlgoSec solutions Joseph Hallman 2 min read Joseph Hallman Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 10/30/23 Published In today’s dynamic digital landscape, the security of hybrid networks has taken center stage. As organizations increasingly adopt cloud solutions, like Azure, the complexities of securing hybrid networks have grown significantly. In this blog post, we’ll provide an overview of the key products and solutions presented in the recent webinar with Microsoft, highlighting how they address these challenges. Azure Firewall: Key features Azure Firewall, a cloud-native firewall offers robust features and benefits. It boasts high availability, auto-scalability, and requires minimal maintenance. Key capabilities include: Filtering and securing both network and application traffic. Support for source NAT and destination NAT configurations. Built-in threat intelligence to identify and block suspicious traffic. Three SKUs catering to different customer needs, with the Premium SKU offering advanced security features. Premium features encompass deep packet inspection, intrusion detection and prevention, web content filtering, and filtering based on web categories. Azure Firewall seamlessly integrates with other Azure services like DDoS protection, API gateway, private endpoints, and Sentinel for security correlation and alerting. AlgoSec: Simplifying hybrid network security AlgoSec specializes in simplifying hybrid network security. Their solutions address challenges such as managing multiple applications across multiple cloud platforms. AlgoSec’s offerings include: Visibility into application connectivity. Risk assessment across hybrid environments. Intelligent automation for efficient and secure network changes. CloudFlow: Managing cloud security policies AlgoSec Cloud, a SaaS solution, centralizes the management of security policies across various cloud platforms. Key features include: A security rating system to identify high-risk Risk assessment for assets Identification of unused rules Detailed policy visibility A powerful traffic simulation query tool to analyze traffic routes and rule effectiveness. Risk-aware change automation to identify potential risks associated with network changes. Integration with Azure Cloudflow seamlessly integrates with Azure, extending support to Azure Firewall and network security groups. It enables in-depth analysis of security risks and policies within Azure subscriptions. AlgoSec’s recent acquisition of Prevasio promises synergistic capabilities, enhancing security and compliance features. Conclusion In the ever-evolving landscape of hybrid networks, Azure Firewall and AlgoSec Cloudflow are powerful allies. Azure Firewall provides robust security for Azure customers, while Cloudflow offers a comprehensive approach to managing security policies across diverse cloud platforms. These solutions empower organizations to master hybrid network security, ensuring the security and efficiency of their applications and services. Resources- View the on-demand webinar here – Understanding your hybrid network security- with AlgoSec and Microsoft Azure.mp4 – AlgoSec Schedule a demo Related Articles 2025 in review: What innovations and milestones defined AlgoSec’s transformative year in 2025? AlgoSec Reviews Mar 19, 2023 · 2 min read Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call
- Business-driven Security Management For The Federal Governments - AlgoSec
Business-driven Security Management For The Federal Governments Download PDF Schedule time with one of our experts Schedule time with one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Continue
- AlgoSec | Understanding Security Considerations in IaaS/PaaS/SaaS Deployments
Knowing how to select and position security capabilities in different cloud deployment models is critical to comprehensive security... Cloud Security Understanding Security Considerations in IaaS/PaaS/SaaS Deployments Rony Moshkovich 2 min read Rony Moshkovich Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 11/24/22 Published Knowing how to select and position security capabilities in different cloud deployment models is critical to comprehensive security across your organization. Implementing the right pattern allows you to protect the confidentiality, integrity, and availability of cloud data assets. It can also improve incident response to security threats. Additionally, security teams and cloud security architects no longer have to rely on pre-set security templates or approaches built for on-premises environments. Instead, they must adapt to the specific security demands of the cloud and integrate them with the overall cloud strategy. This can be accomplished by re-evaluating defense mechanisms and combining cloud-native security and vendor tools. Here, we’ll break down the security requirements and best practices for cloud service models like IaaS, PaaS, and SaaS. Do you have cloud security architects on board? We’ll also cover their roles and the importance of leveraging native security tools specific to each model. Managing Separation of Responsibilities with the Cloud Service Provider Secure cloud deployments start with understanding responsibilities. Where do you stand, and what is expected of you? There are certain security responsibilities the cloud security provider takes care of and those that the customer handles. This division of responsibilities means adjusting focus and using different measures to ensure security is necessary. Therefore, organizations must consider implementing compensating controls and alternative security measures to make up for any limitations in the cloud service provider’s security offerings. Security Considerations for SaaS (Software-as-a-Service) Deployments The specific security requirements in SaaS deployments may vary between services. However, it’s important to consider the following areas: Data protection During cloud deployments, protecting data assets is a tough nut to crack for many organizations. As a SaaS provider, ensuring data protection is crucial because you handle and store sensitive customer data. Encryption must be implemented for data in transit and at rest. Protecting data at rest is the cloud provider’s responsibility, whereas you are responsible for data in transit. The cloud provider implements security measures like encryption, access controls, and physical security to protect the data stored in their infrastructure. On the other hand, it’s your responsibility to implement secure communication protocols like encryption, ensuring data remains protected when it moves between your SaaS application. Additionally, best practice solutions may offer you the option of managing your encryption keys so that cloud operations staff cannot decrypt customer data. Interfacing with the Cloud Service There are a number of security considerations to keep in mind when interacting with a SaaS deployment. These include validating data inputs, implementing secure APIs, and securing communication channels. It’s crucial to use secure protocols like HTTPS and to ensure that the necessary authentication and authorization mechanisms are in place. You may also want to review and monitor access logs frequently to spot and address any suspicious activity. Application Security in SaaS During SaaS deployments, it’s essential to ensure application security. For instance, secure coding practices, continuous vulnerability assessments, and comprehensive application testing all contribute to effective SaaS application security. Cross-site scripting (XSS) and SQL injection are some of the common web application cyber-attacks today. You can improve the application’s security posture by implementing the right input validation, regular security patches from the SaaS provider, and web application firewalls (WAFs). Cloud Identity and Access Controls Here, you must define how cloud services will integrate and federate with existing enterprise identity and access management (IAM) systems. This ensures a consistent and secure access control framework. Implementing strong authentication mechanisms like multifactor authentication (MFA) and enforcing proper access controls based on roles and responsibilities are necessary security requirements. You should also consider using Cloud Access Security Broker (CASB) tools to provide adaptive and risk-based access controls. Regulatory Compliance Using a cloud service doesn’t exempt one from regulatory compliance, and cloud architects must design the SaaS architecture to align with these requirements. But why are these stringent requirements there in the first place? The purpose of these regulations is to protect consumer privacy by enforcing confidentiality, integrity, availability, and accountability. So, achieving compliance means you meet these regulations. It demonstrates that your applications and tech stack maintain secure privacy levels. Failure to comply could cost money in the form of fines, legal action, and a damaged reputation. You don’t want that. Security Considerations for PaaS (Platform-as-a-Service) Deployments PaaS security considerations during deployments will address all the SaaS areas. But as a PaaS customer, there are slight differences you should know. For example, more options exist to configure how data is protected and who can do what with it. As such, the responsibility of user permissions may be given to you. On the other hand, some PaaS providers may have built-in tools and mechanisms for managing user permissions. So, what are the other key areas you want to address to ensure a secure environment for PaaS deployments? We’ll start with the application security. Application Security The customer is responsible for securing the applications they build and deploy on the PaaS platform. Securing application platforms is necessary, and cloud architects must ensure this from the design and development stage. So, what do you do to ensure application security? It all starts from the onset. From secure coding practices, addressing application vulnerabilities, and conducting regular security testing. You’ll often find that most security vulnerabilities are introduced from the early stages of software development. If you can identify and fix potential flaws using penetration testing and threat modeling practices, you’re on your way to successful deployment. Data Security PaaS cloud security deployments offer more flexibility and allow customers control over their data and user entitlements. What this means is you can build and deploy your own applications on the platform. You can configure security measures and controls within your applications by defining who has access to applications, what they can do, and how data is protected. Here, cloud security architects and security teams can ensure data classification and access controls, determining appropriate encryption keys management practices, secure data integration and APIs, and data governance. Ultimately, configuring data protection mechanisms and user permissions provides customers with greater customization and control. Platform Security The platform itself, including the operating system, underlying infrastructure, data centers, and middleware, need to be protected. This is the responsibility of the PaaS provider. They must ensure that the components that keep the platform up are functional at all times. Network Security In PaaS environments, identity and roles are primarily used for network security to determine access to resources and data in the PaaS platform. As such, the most important factor to consider in this case is verifying the user identity and managing access based on their roles and permissions. Rather than relying on traditional network security measures like perimeter controls, IDS/IPS, and traffic monitoring, there is a shift to user-centric access controls. Security Considerations for IaaS (Infrastructure-as-a-Service) Cloud Deployments When it comes to application and software security, IaaS security during cloud deployment is similar. If you’re an IaaS customer, there are slight differences in how IaaS cloud deployment is handled. For example, while the cloud provider handles the hypervisor or virtualized layer, everything else is the customers’ responsibility. So, you must secure the cloud deployment by implementing appropriate security measures to safeguard their applications and data. Due to different deployment patterns, some security tools that work well for SaaS may not be suitable for IaaS. For example, we discussed how CASB could be excellent for cloud identity, data, and access controls in SaaS applications. However, this may not be effective in IaaS environments. Your cloud architects and security teams must understand these differences when deploying IaaS. They should consider alternative or additional security measures in certain areas to ensure more robust security during cloud deployments. These areas are: Access Management IaaS deployment requires you to consider several identity and access management (IAM) dimensions. For example, cloud architects must consider access to the operating system, including applications and middleware installed on them. Additionally, they must also consider privileged access, such as root or administrative access at the OS level. Keep in mind that IaaS has additional access layers. These consist of access to the IaaS console and other cloud provider features that may offer insights about or impact the operation of cloud resources. For example, key management and auditing and resource configuration and hardening. It’s important to clarify who has access to these areas and what they can do. Regular Patching There are more responsibilities for you. The IaaS customer is responsible for keeping workloads updated and maintained. This typically includes the OS itself and any additional software installed on the virtual machines. Therefore, cloud architects must apply the same vigilance to cloud workloads as they would to on-premises servers regarding patching and maintenance. This ensures proactive, consistent, and timely updates that ensure the security and stability of cloud workloads. Network Security IaaS customers must configure and manage security mechanisms within their virtual networks. This includes setting firewalls, using intrusion detection and intrusion prevention systems (IDS/IPS), establishing secure connections (VPN), and network monitoring. On the other hand, the cloud provider ensures network security for the underlying network infrastructure, like routers and switches. They also ensure physical security by protecting network infrastructure from unauthorized access. Data Protection While IaaS providers ensure the physical security of data centers, IaaS customers must secure their own data in the IaaS environment. They need to protect data stored in databases, virtual machines (VMs), and any other storage system provisioned by the IaaS provider. Some IaaS providers, especially large ones, offer encryption capabilities for the VMs created on their platform. This feature is typically free or low-priced. It’s up to you to decide whether managing your own encryption keys is more effective or to choose the provider’s offerings. If you decide to go for this feature, it’s important to clarify how encrypting data at rest may affect other services from the IaaS provider, such as backup and recovery. Leveraging Native Cloud Security Tools Just like the encryption feature, some cloud service providers offer a range of native tools to help customers enforce effective security. These tools are available for IaaS, PaaS, and SaaS cloud services. While customers may decide not to use them, the low financial and operational impact of native cloud security tools on businesses makes them a smart decision. It allows you to address several security requirements quickly and easily due to seamless control integration. However, it’s still important to decide which controls are useful and where they are needed. Conclusion Cloud security architecture is always evolving. And this continuous change makes cloud environments more complex and dynamic. From misconfigurations to data loss, many challenges can make secure cloud deployments for IaaS, PaaS, and SaaS services more challenging. Prevasio, an AlgoSec company, is your trusted cloud security partner that helps your organization streamline cloud deployments. Our cloud-native application provides increased risk visibility and control over security and compliance requirements. Contact us now to learn more about how you can expedite your cloud security operations. Schedule a demo Related Articles 2025 in review: What innovations and milestones defined AlgoSec’s transformative year in 2025? AlgoSec Reviews Mar 19, 2023 · 2 min read Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call
- Challenges in Managing Security in Native, Hybrid and Multi-Cloud Environments - AlgoSec
Challenges in Managing Security in Native, Hybrid and Multi-Cloud Environments Download PDF Schedule time with one of our experts Schedule time with one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Continue
- AlgoSec SaaS Services - Security Practices - AlgoSec
AlgoSec SaaS Services - Security Practices Download PDF Schedule time with one of our experts Schedule time with one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Continue
- AlgoSec | 10 Best Firewall Monitoring Software for Network Security
Firewall monitoring is an important part of maintaining strict network security. Every firewall device has an important role to play... Firewall Policy Management 10 Best Firewall Monitoring Software for Network Security Asher Benbenisty 2 min read Asher Benbenisty Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 10/24/23 Published Firewall monitoring is an important part of maintaining strict network security. Every firewall device has an important role to play protecting the network, and unexpected flaws or downtime can put the entire network at risk. Firewall monitoring solutions provide much-needed visibility into the status and behavior of your network firewall setup. They make the security of your IT infrastructure observable, enabling you to efficiently deploy resources towards managing and securing traffic flows. This is especially important in environments with multiple firewall hardware providers, where you may need to verify firewalls, routers, load balancers, and more from a central interface. What is the role of Firewall Monitoring Software? Every firewall in your network is a checkpoint that verifies traffic according to your security policy. Firewall monitoring software assesses the performance and reports the status of each firewall in the network. This is important because a flawed or defective firewall can’t do its job properly. In a complex enterprise IT environment, dedicating valuable resources to manually verifying firewalls isn’t feasible. The organization may have hardware firewalls from Juniper or Cisco, software firewalls from Check Point, and additional built-in operating system firewalls included with Microsoft Windows. Manually verifying each one would be a costly and time-consuming workflow that prevents limited security talent from taking on more critical tasks. Additionally, admins would have to wait for individual results from each firewall in the network. In the meantime, the network would be exposed to vulnerabilities that exploit faulty firewall configurations. Firewall monitoring software solves this problem using automation . By compressing all the relevant data from every firewall in the network into a single interface, analysts and admins can immediately detect security threats that compromise firewall security. The Top 10 Firewall Monitoring Tools Right Now 1. AlgoSec AlgoSec enables security teams to visualize and manage complex hybrid networks . It uses a holistic approach to provide instant visibility to the entire network’s security configuration, including cloud and on-premises infrastructure. This provides a single pane of glass that lets security administrators preview policies before enacting them and troubleshoot issues in real-time. 2. Wireshark Wireshark is a widely used network protocol analyzer. It can capture and display the data traveling back and forth on a network in real-time. While it’s not a firewall-specific tool, it’s invaluable for diagnosing network issues and understanding traffic patterns. As an open-source tool, anyone can download WireShark for free and immediately start using it to analyze data packets. 3. PRTG Network Monitor PRTG is known for its user-friendly interface and comprehensive monitoring capabilities. It supports SNMP and other monitoring methods, making it suitable for firewall monitoring. Although it is an extensible and customizable solution, it requires purchasing a dedicated on-premises server. 4. SolarWinds Firewall Security Manager SolarWinds offers a suite of network management tools, and their Firewall Security Manager is specifically designed for firewall monitoring and management. It helps with firewall rule analysis, change management, and security policy optimization. It is a highly configurable enterprise technology that provides centralized incident management features. However, deploying SolarWinds can be complex, and the solution requires specific on-premises hardware to function. 5. FireMon FireMon is a firewall management and analysis platform. It provides real-time visibility into firewall rules and configurations, helping organizations ensure that their firewall policies are compliant and effective. FireMon minimizes security risks related to policy misconfigurations, extending policy management to include multiple security tools, including firewalls. 6. ManageEngine ManageEngine’s OpManager offers IT infrastructure management solutions, including firewall log analysis and reporting. It can help you track and analyze traffic patterns, detect anomalies, and generate compliance reports. It is intuitive and easy to use, but only supports monitoring devices across multiple networks with its higher-tier Enterprise Edition. It also requires the installation of on-premises hardware. 7. Tufin Tufin SecureTrack is a comprehensive firewall monitoring and management solution. It provides real-time monitoring, change tracking, and compliance reporting for firewalls and other network devices. It can automatically discover network assets and provide comprehensive information on network assets, but may require additional configuration to effectively monitor complex enterprise networks. 8. Cisco Firepower Management Center If you’re using Cisco firewalls, the Firepower Management Center offers centralized management and monitoring capabilities. It provides insights into network traffic, threats, and policy enforcement. Cisco simplifies network management and firewall monitoring by offering an intuitive centralized interface that lets admins control Cisco firewall devices directly. 9. Symantec Symantec (now part of Broadcom) offers firewall appliances with built-in monitoring and reporting features. These appliances are known for providing comprehensive coverage to endpoints like desktop workstations, laptops, and mobile devices. Symantec also provides some visibility into firewall configurations, but it is not a dedicated service built for this purpose. 10. Fortinet Fortinet’s FortiAnalyzer is designed to work with Fortinet’s FortiGate firewalls. It provides centralized logging, reporting, and analysis of network traffic and security events. This provides customers with end-to-end visibility into emerging threats on their networks and even includes useful security automation tools. It’s relatively easy to deploy, but integrating it with a complex set of firewalls may take some time. Benefits of Firewall Monitoring Software Enhanced Security Your firewalls are your first line of defense against cyberattacks, preventing malicious entities from infiltrating your network. Threat actors know this, and many sophisticated attacks start with attempts to disable firewalls or overload them with distributed denial of service (DDoS) attacks. Without a firewall monitoring solution in place, you may not be aware such an attack is happening until it’s too late. Even if your firewalls are successfully defending against the attack, your detection and response team should be ready to start mitigating risk the moment the attack is launched. Traffic Control Firewalls can add strain and latency to network traffic. This is especially true of software firewalls, which have to draw computing resources from the servers they protect. Over time, network congestion can become an expensive obstacle to growth, creating bottlenecks that reduce the efficiency of every device on the network. Improperly implemented firewalls can play a major role in these bottlenecks because they have to verify every data packet transferred through them. With firewall monitoring, system administrators can assess the impact of firewall performance on network traffic and use that data to more effectively balance network loads. Organizations can reduce overhead by rerouting data flows and finding low-cost storage options for data they don’t constantly need access to. Real-time Alerts If attackers manage to break through your defenses and disable your firewall, you will want to know immediately. Part of having a strong security posture is building a multi-layered security strategy. Your detection and response team will need real-time updates on the progress of active cyberattacks. They will use this information to free the resources necessary to protect the organization and mitigate risk. Organizations that don’t have real-time firewall monitoring in place won’t know if their firewalls fail against an ongoing attack. This can lead to a situation where the CSIRT team is forced to act without clear knowledge about what they’re facing. Performance Monitoring Poor network performance can have a profound impact on the profitability of an enterprise-sized organization. Drops in network quality cost organizations more than half a million dollars per year , on average. Misconfigured firewalls can contribute to poor network performance if left unaddressed while the organization grows and expands its network. Properly monitoring the performance of the network requires also monitoring the performance of the firewalls that protect it. System administrators should know if overly restrictive firewall policies prevent legitimate users from accessing the data they need. Policy Enforcement Firewall monitoring helps ensure security policies are implemented and enforced in a standardized way throughout the organization. They can help discover the threat of shadow IT networks made by users communicating outside company-approved devices and applications. This helps prevent costly security breaches caused by negligence. Advanced firewall monitoring solutions can also help security leaders create, save, and update policies using templates. The best of these solutions enable security teams to preview policy changes and research elaborate “what-if” scenarios, and update their core templates accordingly. Selecting the Right Network Monitoring Software When considering a firewall monitoring service, enterprise security leaders should evaluate their choice based on the following features: Scalability Ensure the software can grow with your network to accommodate future needs. Ideally, both your firewall setup and the monitoring service responsible for it can grow at the same pace as your organization. Pay close attention to the way the organization itself is likely to grow over time. A large government agency may require a different approach to scalability than an acquisition-oriented enterprise with many separate businesses under its umbrella. Customizability Look for software that allows you to tailor security rules to your specific requirements. Every organization is unique. The appropriate firewall configuration for your organization may be completely different than the one your closest competitor needs. Copying configurations and templates between organizations won’t always work. Your network monitoring solution should be able to deliver performance insights fine-tuned to your organization’s real needs. If there are gaps in your monitoring capabilities, there are probably going to be gaps in your security posture as well. Integration Compatibility with your existing network infrastructure is essential for seamless operation. This is another area where every organization is unique. It’s very rare for two organizations to use the same hardware and software tools, and even then there may be process-related differences that can become obstacles to easy integration. Your organization’s ideal firewall monitoring solution should provide built-in support for the majority of the security tools the organization uses. If there are additional tools or services that aren’t supported, you should feel comfortable with the process of creating a custom integration without too much difficulty. Reporting Comprehensive reporting features provide insights into network activity and threats. It should generate reports that fit the formats your analysts are used to working with. If the learning curve for adopting a new technology is too high, achieving buy-in will be difficult. The best network monitoring solutions provide a wide range of reports into every aspect of network and firewall performance. Observability is one of the main drivers of value in this kind of implementation, and security leaders have no reason to accept compromises here. AlgoSec for Real-time Network Traffic Analysis Real-time network traffic monitoring reduces security risks and enables faster, more significant performance improvements at enterprise scale. Security professionals and network engineers need access to clear, high-quality insight on data flows and network performance, and AlgoSec delivers. One way AlgoSec deepens the value of network monitoring is through the ability to connect applications directly to security policy rules . When combined with real-time alerts, this provides deep visibility into the entire network while reducing the need to conduct time-consuming manual queries when suspicious behaviors or sub-optimal traffic flows are detected. Firewall Monitoring Software: FAQs How Does Firewall Monitoring Software Work? These software solutions manage firewalls so they can identify malicious traffic flows more effectively. They connect multiple hardware and software firewalls to one another through a centralized interface. Administrators can gather information on firewall performance, preview or change policies, and generate comprehensive reports directly. This enables firewalls to detect more sophisticated malware threats without requiring the deployment of additional hardware. How often should I update my firewall monitoring software? Regular updates are vital to stay protected against evolving threats. When your firewall vendor releases an update, it often includes critical security data on the latest emerging threats as well as patches for known vulnerabilities. Without these updates, your firewalls may become vulnerable to exploits that are otherwise entirely preventable. The same is true for all software, but it’s especially important for firewalls. Can firewall monitoring software prevent all cyberattacks? While highly effective, no single security solution is infallible. Organizations should focus on combining firewall monitoring software with other security measures to create a multi-layered security posture. If threat actors successfully disable or bypass your firewalls, your detection and response team should receive a real-time notification and immediately begin mitigating cyberattack risk. Is open-source firewall monitoring software a good choice? Open-source options can be cost-effective, but they may require more technical expertise to configure and maintain. This is especially true for firewall deployments that rely on highly customized configurations. Open-source architecture can make sense in some cases, but may present challenges to scalability and the affordability of hiring specialist talent later on. How do I ensure my firewall doesn’t block legitimate traffic? Regularly review and adjust your firewall rules to avoid false positives. Sophisticated firewall solutions include features for reducing false positives, while simpler firewalls are often unable to distinguish genuine traffic from malicious traffic. Advanced firewall monitoring services can help you optimize your firewall deployment to reduce false positives without compromising security. How does firewall monitoring enhance overall network security? Firewalls can address many security threats, from distributed denial of service (DDoS) attacks to highly technical cross-site scripting attacks. The most sophisticated firewalls can even block credential-based attacks by examining outgoing content for signs of data exfiltration. Firewall monitoring allows security leaders to see these processes in action and collect data on them, paving the way towards continuous security improvement and compliance. What is the role of VPN audits in network security? Advanced firewalls are capable of identifying VPN connections and enforcing rules specific to VPN traffic. However, firewalls are not generally capable of decrypting VPN traffic, which means they must look for evidence of malicious behavior outside the data packet itself. Firewall monitoring tools can audit VPN connections to determine if they are harmless or malicious in nature, and enforce rules for protecting enterprise assets against cybercriminals equipped with secure VPNs . What are network device management best practices? Centralizing the management of network devices is the best way to ensure optimal network performance in a rapid, precise way. Organizations that neglect to centralize firewall and network device management have to manually interact with increasingly complex fleets of network hardware, software applications, and endpoint devices. This makes it incredibly difficult to make changes when needed, and increases the risks associated with poor change management when they happen. What are the metrics and notifications that matter most for firewall monitoring? Some of the important parameters to pay attention to include the volume of connections from new or unknown IP addresses, the amount of bandwidth used by the organization’s firewalls, and the number of active sessions on at any given time. Port information is especially relevant because so many firewall rules specify actions based on the destination port of incoming traffic. Additionally, network administrators will want to know how quickly they receive notifications about firewall issues and how long it takes to resolve those issues. What is the role of bandwidth and vulnerability monitoring? Bandwidth monitoring allows system administrators to find out which users and hosts consume the most bandwidth, and how network bandwidth is shared among various protocols. This helps track network performance and provides visibility into security threats that exploit bandwidth issues. Denial of service (DoS) attacks are a common cyberattack that weaponizes network bandwidth. What’s the difference between on-premises vs. cloud-based firewall monitoring? Cloud-based firewall monitoring uses software applications deployed as cloud-enabled services while on-premises solutions are physical hardware solutions. Physical solutions must be manually connected to every device on the network, while cloud-based firewall monitoring solutions can automatically discover assets and IT infrastructure immediately after being deployed. What is the role of configuration management? Updating firewall configurations is an important part of maintaining a resilient security posture. Organizations that fail to systematically execute configuration changes on all assets on the network run the risk of forgetting updates or losing track of complex policies and rules. Automated firewall monitoring solutions allow admins to manage configurations more effectively while optimizing change management. What are some best practices for troubleshooting network issues? Monitoring tools offer much-needed visibility to IT professionals who need to address network problems. These tools help IT teams narrow down the potential issues and focus their time and effort on the most likely issues first. Simple Network Management Protocol (SNMP) monitoring uses a client-server application model to collect information running on network devices. This provides comprehensive data about network devices and allows for automatic discovery of assets on the network. What’s the role of firewall monitoring in Windows environments? Microsoft Windows includes simple firewall functionality in its operating system platform, but it is best-suited to personal use cases on individual endpoints. Organizations need a more robust solution for configuring and enforcing strict security rules, and a more comprehensive way to monitor Windows-based networks as a whole. Platforms like AlgoSec help provide in-depth visibility into the security posture of Windows environments. How do firewall monitoring tools integrate with cloud services? Firewall monitoring tools provide observability to cloud-based storage and computing services like AWS and Azure. Cloud-native monitoring solutions can ingest network traffic coming to and from public cloud providers and make that data available for security analysts. Enterprise security teams achieve this by leveraging APIs to automate the transfer of network performance data from the cloud provider’s infrastructure to their own monitoring platform. What are some common security threats and cyberattacks that firewalls can help mitigate? Since firewalls inspect every packet of data traveling through the network perimeter, they play a critical role detecting and mitigating many different threats and attacks. Simple firewalls can block unsophisticated denial-of-service (DoS) attacks and detect known malware variants. Next-generation firewalls can prevent data breaches by conducting deep packet analysis, identifying compromised applications and user accounts, and even blocking sensitive data from leaving the network altogether. What is the importance of network segmentation and IP address management? Network segmentation protects organizations from catastrophic data breaches by ensuring that even successful cyberattacks are limited in scope. If attackers compromise one part of the network, they will not necessarily have access to every other part. Security teams achieve segmentation in part by effectively managing network IP addresses according to a robust security policy and verifying the effects of policy changes using monitoring software. Schedule a demo Related Articles 2025 in review: What innovations and milestones defined AlgoSec’s transformative year in 2025? AlgoSec Reviews Mar 19, 2023 · 2 min read Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call
- Ace information center | AlgoSec
ACE gives you complete visibility into your cloud applications, simplifies network security policy management, and automates compliance across your multi-cloud infrastructure. ACE Information Center Getting started Why ACE ACE access ACE videos Let’s connect Getting started Great news! As a valued AlgoSec Cloud customer, you now have extended access to AlgoSec Cloud Enterprise (ACE). We're so excited for you to experience the next level of cloud security, designed to give you unparalleled visibility and control. You're already doing great things with AlgoSec for network security. Now, ACE is here to help you do even more, providing deeper insights and comprehensive management across your entire multi-cloud environment. Important: To ensure you can see and use all the amazing features the app analyzer has to offer, you'll need to open the required permissions in your cloud environment. This is a crucial step that ensures the program can access all the data required to give you a complete picture. You can find detailed instructions and a list of the permissions needed for your specific cloud provider here: AWS: ACE Access AWS Azure: ACE Access Azure GCP: ACE Access GCP Why ACE? ACE gives you complete visibility into your cloud applications, simplifies network security policy management, and automates compliance across your multi-cloud infrastructure. Think of it as your new co-pilot for cloud security, helping you: One unified view: Seamlessly combine cloud posture management with your existing AlgoSec network security. Get a truly holistic perspective of your entire environment. With ACE, you can bridge the gap between your cloud and on-premise infrastructure to achieve unified hybrid security. With ACE you can: Gain a single, holistic view across both environments. Enforce consistent policies. Simplify change management. To get a clearer picture of how ACE can transform your security, download our one-pager. Deeper, actionable insights: Dive into advanced features that give you immediate, practical intelligence about your cloud security health. You'll know exactly what to do next. Amplified protection: Proactively discover and tackle risks across your entire cloud environment, strengthening the already solid foundation you have with AlgoSec. ACE access We're all about empowering you with the best cloud security tools available. This extended access to ACE is our way of providing you with: See everything (beyond the network!): Get a full, real-time inventory of all your cloud applications and infrastructure. No more blind spots – you'll see everything, far beyond traditional network boundaries. Spot risks before they're problems: Proactively find vulnerabilities and misconfigurations across your entire cloud setup. ACE helps you identify potential issues before they can impact your operations, building on your current security efforts. Keep compliance simple: Maintain strong and continuous compliance with industry standards and your internal policies. ACE brings you deeper, cloud-native insights to make compliance easier than ever. Streamline your day: Automate security workflows and policy enforcement. This means more time for you and consistent security across all your expanding cloud resources. Ready to explore your new ACE access? You've already been granted access! Look for a welcome email with simple instructions to confirm and get started. We'll be there to guide you through the initial steps, helping you quickly get comfortable with the ACE dashboard and all its powerful features. We've designed this to be a smooth, insightful, and incredibly valuable experience for you! Join the growing community of leading organizations who are transforming their cloud security with the unified power of AlgoSec. We're here to help you master your cloud security journey! ACE videos ACE Access Ace Overview Application Discovery ACE Dashboard ACE Configuration & Compliance Container Security Let’s connect Have a question, need more information, or just want to say hello? We'd love to hear from you Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Continue
- Navigating compliance in 2026: The path to automated security - AlgoSec
Navigating compliance in 2026: The path to automated security WhitePaper Download PDF Schedule time with one of our experts Schedule time with one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Continue
- AlgoSec | How To Reduce Attack Surface: 6 Proven Tactics
How To Reduce Attack Surface: 6 Proven Tactics Security-oriented organizations continuously identify, monitor, and manage... Cyber Attacks & Incident Response How To Reduce Attack Surface: 6 Proven Tactics Tsippi Dach 2 min read Tsippi Dach Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 12/20/23 Published How To Reduce Attack Surface: 6 Proven Tactics Security-oriented organizations continuously identify, monitor, and manage internet-connected assets to protect them from emerging attack vectors and potential vulnerabilities. Security teams go through every element of the organization’s security posture – from firewalls and cloud-hosted assets to endpoint devices and entry points – looking for opportunities to reduce security risks. This process is called attack surface management. It provides a comprehensive view into the organization’s cybersecurity posture, with a neatly organized list of entry points, vulnerabilities, and weaknesses that hackers could exploit in a cyberattack scenario. Attack surface reduction is an important element of any organization’s overall cybersecurity strategy. Security leaders who understand the organization’s weaknesses can invest resources into filling the most critical gaps first and worrying about low-priority threats later. What assets make up your organization’s attack surface? Your organization’s attack surface is a detailed list of every entry point and vulnerability that an attacker could exploit to gain unauthorized access. The more entry points your network has, the larger its attack surface will be. Most security leaders divide their attention between two broad types of attack surfaces: The digital attack surface This includes all network equipment and business assets used to transfer, store, and communicate information. It is susceptible to phishing attempts , malware risks, ransomware attacks, and data breaches. Cybercriminals may infiltrate these kinds of assets by bypassing technical security controls, compromising unsecured apps or APIs, or guessing weak passwords. The physical attack surface This includes business assets that employees, partners, and customers interact with physically. These might include hardware equipment located inside data centers and USB access points. Even access control systems for office buildings and other non-cyber threats may be included. These assets can play a role in attacks that involve social engineering, insider threats, and other malicious actors who work in-person. Even though both of these attack surfaces are distinct, many of their security vulnerabilities and potential entry points overlap in real-life threat scenarios. For example, thieves might steal laptops from an unsecured retail location and leverage sensitive data on those devices to launch further attacks against the organization’s digital assets. Organizations that take steps to minimize their attack surface area can reduce the risks associated with this kind of threat. Known Assets, Unknown Assets, and Rogue Assets All physical and digital business assets fall into one of three categories: Known assets are apps, devices, and systems that the security team has authorized to connect to the organization’s network. These assets are included in risk assessments and they are protected by robust security measures, like network segmentation and strict permissions. Unknown assets include systems and web applications that the security team is not aware of. These are not authorized to access the network and may represent a serious security threat. Shadow IT applications may be part of this category, as well as employee-owned mobile devices storing sensitive data and unsecured IoT devices. Rogue assets connect to the network without authorization, but they are known to security teams. These may include unauthorized user accounts, misconfigured assets, and unpatched software. A major part of properly managing your organization’s attack surface involves the identification and remediation of these risks. Attack Vectors Explained: Minimize Risk by Following Potential Attack Paths When conducting attack surface analysis, security teams have to carefully assess the way threat actors might discover and compromise the organization’s assets while carrying out their attack. This requires the team to combine elements of vulnerability management with risk management , working through the cyberattack kill chain the way a hacker might. Some cybercriminals leverage technical vulnerabilities in operating systems and app integrations. Others prefer to exploit poor identity access management policies, or trick privileged employees into giving up their authentication credentials. Many cyberattacks involve multiple steps carried out by different teams of threat actors. For example, one hacker may specialize in gaining initial access to secured networks while another focuses on using different tools to escalate privileges. To successfully reduce your organization’s attack surface, you must follow potential attacks through these steps and discover what their business impact might be. This will provide you with the insight you need to manage newly discovered vulnerabilities and protect business assets from cyberattack. Some examples of common attack vectors include: API vulnerabilities. APIs allow organizations to automate the transfer of data, including scripts and code, between different systems. Many APIs run on third-party servers managed by vendors who host and manage the software for customers. These interfaces can introduce vulnerabilities that internal security teams aren’t aware of, reducing visibility into the organization’s attack surface. Unsecured software plugins. Plugins are optional add-ons that enhance existing apps by providing new features or functionalities. They are usually made by third-party developers who may require customers to send them data from internal systems. If this transfer is not secured, hackers may intercept it and use that information to attack the system. Unpatched software. Software developers continuously release security patches that address emerging threats and vulnerabilities. However, not all users implement these patches the moment they are released. This delay gives attackers a key opportunity to learn about the vulnerability (which is as easy as reading the patch changelog) and exploit it before the patch is installed. Misconfigured security tools. Authentication systems, firewalls, and other security tools must be properly configured in order to produce optimal security benefits. Attackers who discover misconfigurations can exploit those weaknesses to gain entry to the network. Insider threats. This is one of the most common attack vectors, yet it can be the hardest to detect. Any employee entrusted with sensitive data could accidentally send it to the wrong person, resulting in a data breach. Malicious insiders may take steps to cover their tracks, using their privileged permissions and knowledge of the organization to go unnoticed. 6 Tactics for Reducing Your Attack Surface 1. Implement Zero Trust The Zero Trust security model assumes that data breaches are inevitable and may even have already occurred. This adds new layers to the problems that attack surface management resolves, but it can dramatically improve overall resilience and preparedness. When you develop your security policies using the Zero Trust framework, you impose strong limits on what hackers can and cannot do after gaining initial access to your network. Zero Trust architecture blocks attackers from conducting lateral movement, escalating their privileges, and breaching critical data. For example, IoT devices are a common entry point into many networks because they don’t typically benefit from the same level of security that on-premises workstations receive. At the same time, many apps and systems are configured to automatically trust connections from internet-enabled sensors and peripheral devices. Under a Zero Trust framework, these connections would require additional authentication. The systems they connect to would also need to authenticate themselves before receiving data. Multi-factor authentication is another part of the Zero Trust framework that can dramatically improve operational security. Without this kind of authentication in place, most systems have to accept that anyone with the right username and password combination must be a legitimate user. In a compromised credential scenario, this is obviously not the case. Organizations that develop network infrastructure with Zero Trust principles in place are able to reduce the number of entry points their organization exposes to attackers and reduce the value of those entry points. If hackers do compromise parts of the network, they will be unable to quickly move between different segments of the network, and may be unable to stay unnoticed for long. 2. Remove Unnecessary Complexity Unknown assets are one of the main barriers to operational security excellence. Security teams can’t effectively protect systems, apps, and users they don’t have detailed information on. Any rogue or unknown assets the organization is responsible for are almost certainly attractive entry points for hackers. Arbitrarily complex systems can be very difficult to document and inventory properly . This is a particularly challenging problem for security leaders working for large enterprises that grow through acquisitions. Managing a large portfolio of acquired companies can be incredibly complex, especially when every individual company has its own security systems, tools, and policies to take into account. Security leaders generally don’t have the authority to consolidate complex systems on their own. However, you can reduce complexity and simplify security controls throughout the environment in several key ways: Reduce the organization’s dependence on legacy systems. End-of-life systems that no longer receive maintenance and support should be replaced with modern equivalents quickly. Group assets, users, and systems together. Security groups should be assigned on the basis of least privileged access, so that every user only has the minimum permissions necessary to achieve their tasks. Centralize access control management. Ad-hoc access control management quickly leads to unknown vulnerabilities and weaknesses popping up unannounced. Implement a robust identity access management system so you can create identity-based policies for managing user access. 3. Perform Continuous Vulnerability Monitoring Your organization’s attack surface is constantly changing. New threats are emerging, old ones are getting patched, and your IT environment is supporting new users and assets on a daily basis. Being able to continuously monitor these changes is one of the most important aspects of Zero Trust architecture . The tools you use to support attack surface management should also generate alerts when assets get exposed to known risks. They should allow you to confirm the remediation of detected risks, and provide ample information about the risks they uncover. Some of the things you can do to make this happen include: Investing in a continuous vulnerability monitoring solution. Vulnerability scans are useful for finding out where your organization stands at any given moment. Scheduling these scans to occur at regular intervals allows you to build a standardized process for vulnerability monitoring and remediation. Building a transparent network designed for visibility. Your network should not obscure important security details from you. Unfortunately, this is what many third-party security tools and services achieve. Make sure both you and your third-party security partners are invested in building observability into every aspect of your network. Prioritize security expenditure based on risk. Once you can observe the way users, data, and assets interact on the network, you can begin prioritizing security initiatives based on their business impact. This allows you to focus on high-risk tasks first. 4. Use Network Segmentation to Your Advantage Network segmentation is critical to the Zero Trust framework. When your organization’s different subnetworks are separated from one another with strictly protected boundaries, it’s much harder for attackers to travel laterally through the network. Limiting access between parts of the network helps streamline security processes while reducing risk. There are several ways you can segment your network. Most organizations already perform some degree of segmentation by encrypting highly classified data. Others enforce network segmentation principles when differentiating between production and live development environments. But in order for organizations to truly benefit from network segmentation, security leaders must carefully define boundaries between every segment and enforce authentication policies designed for each boundary. This requires in-depth knowledge of the business roles and functions of the users who access those segments, and the ability to configure security tools to inspect and enforce access control rules. For example, any firewall can block traffic between two network segments. A next-generation firewall can conduct identity-based inspection that allows traffic from authorized users through – even if they are using mobile devices the firewall has never seen before. 5. Implement a Strong Encryption Policy Encryption policies are an important element of many different compliance frameworks . HIPAA, PCI-DSS, and many other regulatory frameworks specify particular encryption policies that organizations must follow to be compliant. These standards are based on the latest research in cryptographic security and threat intelligence reports that outline hackers’ capabilities. Even if your organization is not actively seeking regulatory compliance, you should use these frameworks as a starting point for building your own encryption policy. Your organization’s risk profile is largely the same whether you seek regulatory certification or not – and accidentally deploying outdated encryption policies can introduce preventable vulnerabilities into an otherwise strong security posture. Your organization’s encryption policy should detail every type of data that should be encrypted and the cipher suite you’ll use to encrypt that data. This will necessarily include critical assets like customer financial data and employee payroll records, but it also includes relatively low-impact assets like public Wi-Fi connections at retail stores. In each case, you must implement a modern cipher suite that meets your organization’s security needs and replace legacy devices that do not support the latest encryption algorithms. This is particularly important in retail and office settings, where hardware routers, printers, and other devices may no longer support secure encryption. 6. Invest in Employee Training To truly build security resilience into any company culture, it’s critical to explain why these policies must be followed, and what kinds of threats they address. One of the best ways to administer standardized security compliance training is by leveraging a corporate learning platform across the organization, so that employees can actually internalize these security policies through scenario based training courses. It’s especially valuable in organizations suffering from consistent shadow IT usage. When employees understand the security vulnerabilities that shadow IT introduces into the environment, they’re far less likely to ignore security policies for the sake of convenience. Security simulations and awareness campaigns can have a significant impact on training initiatives. When employees know how to identify threat actors at work, they are much less likely to fall victim to them. However, actually achieving meaningful improvement may require devoting a great deal of time and energy into phishing simulation exercises over time – not everyone is going to get it right in the first month or two. These initiatives can also provide clear insight and data on how prepared your employees are overall. This data can make a valuable contribution to your attack surface reduction campaign. You may be able to pinpoint departments – or even individual users – who need additional resources and support to improve their resilience against phishing and social engineering attacks. Successfully managing this aspect of your risk assessment strategy will make it much harder for hackers to gain control of privileged administrative accounts. Schedule a demo Related Articles 2025 in review: What innovations and milestones defined AlgoSec’s transformative year in 2025? AlgoSec Reviews Mar 19, 2023 · 2 min read Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call
- The Big Collection Of FIREWALL MANAGEMENT TIPS - AlgoSec
The Big Collection Of FIREWALL MANAGEMENT TIPS Download PDF Schedule time with one of our experts Schedule time with one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Continue




