top of page

Search results

615 results found with an empty search

  • AlgoSec | CSPM importance for CISOs. What security issues can be prevented\defended with CSPM?

    Cloud Security is a broad domain with many different aspects, some of them human. Even the most sophisticated and secure systems can be... Cloud Security CSPM importance for CISOs. What security issues can be prevented\defended with CSPM? Rony Moshkovich 2 min read Rony Moshkovich Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 6/17/21 Published Cloud Security is a broad domain with many different aspects, some of them human. Even the most sophisticated and secure systems can be jeopardized by human elements such as mistakes and miscalculations. Many organizations are susceptible to such dangers, especially during critical tech configurations and transfers. Especially for example, during digital transformation and cloud migration may result in misconfigurations that can leave your critical applications vulnerable and your company’s sensitive data an easy target for cyber-attacks. The good news is that Prevasio, and other cybersecurity providers have brought in new technologies to help improve the cybersecurity situation across multiple organizations. Today, we discuss Cloud Security Posture Management (CSPM) and how it can help prevent not just misconfigurations in cloud systems but also protect against supply chain attacks. Understanding Cloud Security Posture Management First, we need to fully understand what a CSPM is before exploring how it can prevent cloud security issues. CSPM is first of all a practice for adopting security best practices as well as automated tools to harden and manage the company security strength across various cloud based services such as Software as a Service (SaaS), Infrastructure as a Service (IaaS), and Platform as a Service (PaaS). These practices and tools can be used to determine and solve many security issues within a cloud system. Not only is CSPM critical to the growth and integrity of your cloud infrastructure, but it’s also mandatory for organizations with CIS, GDPR, PCI-DSS, NIST, HIPAA and similar compliance requirements. How Does CSPM Work? There are numerous cloud service providers such as AWS , Azure , Google Cloud, and others that provide hyper scaling cloud hosted platforms as well as various cloud compute services and solutions to organizations that previously faced many hurdles with their on-site cloud infrastructures. When you migrate your organization to these platforms, you can effectively scale up and cut down on on-site infrastructure spending. However, if not appropriately handled, cloud migration comes with potential security risks. For instance, an average Lift and Shift transfer that involves a legacy application may not be adequately security hardened or reconfigured for safe use in a public cloud setup. This may result in security loopholes that expose the network and data to breaches and attacks. Cloud misconfiguration can happen in multiple ways. However, the most significant risk is not knowing that you are endangering your organization with such misconfigurations. That being the case, below are a few examples of cloud misconfigurations that can be identified and solved by CSPM tools such as Prevasio within your cloud infrastructure: Improper identity and access management : Your organization may not have the best identity and access management system in place. For instance, lack of Multi-Factor Authentication (MFA) for all users, unreliable password hygiene, and discriminatory user policies instead of group access, Role-based access, and everything contrary to best practices, including least privilege. You are unable to log in to events in your cloud due to an accidental CloudTrail error. Cloud storage misconfigurations : Having unprotected S3 buckets on AWS or Azure. CSPM can compute situations that have the most vulnerabilities within applications Incorrect secret management : Secret credentials are more than user passwords or pins. They include encryption keys, API keys, among others. For instance, every admin must use encryption keys on the server-side and rotate the keys every 90 days. Failure to do this can lead to credentials misconfigurations. Ideally, part of your cloud package must include and rely on solutions such as AWS Secrets Manager , Azure Key Vault , and other secrets management solutions. The above are a mere few examples of common misconfigurations that can be found in your cloud infrastructure, but CSPM can provide additional advanced security and multiple performance benefits. Benefits Of CSPM CSPM manages your cloud infrastructure. Some of the benefits of having your cloud infrastructure secured with CSPM boils down to peace of mind, that reassurance of knowing that your organization’s critical data is safe. It further provides long-term visibility to your cloud networks, enables you to identify violations of policies, and allows you to remediate your misconfigurations to ensure proper compliance. Furthermore, CSPM provides remediation to safeguard cloud assets as well as existing compliance libraries. Technology is here to stay, and with CSPM, you can advance the cloud security posture of your organization. To summarize it all, here are what you should expect with CSPM cloud security: Risk assessment : CSPM tools can enable you to see your network security level in advance to gain visibility into security issues such as policy violations that expose you to risk. Continuous monitoring : Since CSPM tools are versatile they present an accurate view of your cloud system and can identify and instantly flag off policy violations in real-time. Compliance : Most compliance laws require the adoption of CIS, NIST, PCI-DSS, SOC2, HIPAA, and other standards in the cloud. With CSPM, you can stay ahead of internal governance, including ISO 27001. Prevention : Most CSPM allows you to identify potential vulnerabilities and provide practical recommendations to prevent possible risks presented by these vulnerabilities without additional vendor tools. Supply Chain Attacks : Some CSPM tools, such as Prevasio , provides you malware scanning features to your applications, data, and their dependency chain on data from external supply chains, such as git imports of external libraries and more. With automation sweeping every industry by storm, CSPM is the future of all-inclusive cloud security. With cloud security posture management, you can do more than remediate configuration issues and monitor your organization’s cloud infrastructure. You’ll also have the capacity to establish cloud integrity from existing systems and ascertain which technologies, tools, and cloud assets are widely used. CSPM’s capacity to monitor cloud assets and cyber threats and present them in user-friendly dashboards is another benefit that you can use to explore, analyze and quickly explain to your team(s) and upper management. Even find knowledge gaps in your team and decide which training or mentorship opportunities your security team or other teams in the organization might require. Who Needs Cloud Security Posture Management? At the moment, cloud security is a new domain that its need and popularity is growing by the day. CSPM is widely used by organizations looking to maximize in a safe way the most of all that hyper scaling cloud platforms can offer, such as agility, speed, and cost-cutting strategies. The downside is that the cloud also comes with certain risks, such as misconfigurations, vulnerabilities and internal\external supply chain attacks that can expose your business to cyber-attacks. CSPM is responsible for protecting users, applications, workloads, data, apps, and much more in an accessible and efficient manner under the Shared Responsibility Model. With CSPM tools, any organization keen on enhancing its cloud security can detect errors, meet compliance regulations, and orchestrate the best possible defenses. Let Prevasio Solve Your Cloud Security Needs Prevasio’s Next-Gen CSPM solution focus on the three best practices: light touch\agentless approach, super easy and user-friendly configuration, easy to read and share security findings context, for visibility to all appropriate users and stakeholders in mind. Our cloud security offerings are ideal for organizations that want to go beyond misconfiguration, legacy compliance or traditional vulnerability scanning. We offer an accelerated visual assessment of your cloud infrastructure, perform automated analysis of a wide range of cloud assets, identify policy errors, supply-chain threats, and vulnerabilities and position all these to your unique business goals. What we provide are prioritized recommendations for well-orchestrated cloud security risk mitigations. To learn more about us, what we do, our cloud security offerings, and how we can help your organization prevent cloud infrastructure attacks, read all about it here . Schedule a demo Related Articles 2025 in review: What innovations and milestones defined AlgoSec’s transformative year in 2025? AlgoSec Reviews Mar 19, 2023 · 2 min read Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • The network security policy management lifecycle | AlgoSec

    Understand the network security policy management lifecycle, from creation to implementation and continuous review, ensuring optimal network protection and compliance. The network security policy management lifecycle Introduction IT security organizations today are judged on how they enable business transformation and innovation. They are tasked with delivering new applications to users and introducing new technologies that will capture new customers, improve productivity and lower costs. They are expected to be agile so they can respond faster than competitors to changing customer and market needs. Unfortunately, IT security is often perceived as standing in the way of innovation and business agility. This is particularly true when it comes to provisioning business application connectivity. When an enterprise rolls out a new application or migrates an application to the cloud it may take weeks or even months to ensure that all the servers, devices and network segments can communicate with each other, and at the same time prevent access to hackers and unauthorized users. But IT security does not have to be a bottleneck to business agility. Nor is it necessary to accept more risk to satisfy the demand for speed. The solution is to manage application connectivity and network security policies through a structured lifecycle methodology. IT security organizations that follow the five stages of a security policy management lifecycle can improve business agility dramatically without sacrificing security. A lifecycle approach not only ensures that the right activities are performed in the right order, it provides a framework for automating repeatable processes, and enables different technical and business groups to work together better. In this whitepaper, we will: Review the obstacles to delivering secure application connectivity and business agility. Explore the lifecycle approach to managing application connectivity and security policies. Examine how the activities at each stage of the lifecycle can help enterprises increase business agility, reduce risks, and lower operating costs. Schedule a Demo Why is it so hard to manage application and network connectivity? Top IT managers sometimes view security policy management as something routine, just part of the “plumbing.” In reality, delivering secure connectivity requires mastering complex data center and cloud infrastructures, coping with constant change, understanding esoteric security and compliance requirements, and coordinating the efforts of multiple technical and business teams. Application connectivity is complex The computing infrastructure of even a medium-sized enterprise includes hundreds of servers, storage systems, and network security devices such as firewalls, routers and load balancers. Complexity is magnified by the fact that many application components are now virtualized. Moreover, hybrid cloud architectures are becoming common. And since networking concepts differ profoundly between physical and cloud-based networks, unified visibility and control are very difficult to obtain. Change never stops Business users need access to data – fast! Yet every time a new application is deployed, changed or migrated, network and security staff need to understand how information will flow between the various web, application, database and storage servers. They need to devise application connectivity rules that allow traffic while preventing access from unauthorized users or creating gaps in their security perimeters. Security and compliance require thousands of application connectivity rules Many security policies are required to manage network access and protect confidential data from outside attackers and from unauthorized access by users or employees. In a typical enterprise, customers and businesses are only allowed to access specific web servers in a “demilitarized zone.” Some applications and databases are authorized for all employees, while others are restricted to specific departments or business units or management levels. Government regulations and industry standards require severely controlled access to credit card and financial information, Personally Identifiable Information (PII), Protected Health Information (PHI) and many other types of confidential data. Security best practices often require additional restrictions, such as limiting the use of protocols that can be used to evade security controls. To enforce these policies, IT security teams need to create and manage thousands, tens of thousands, and sometimes even hundreds of thousands of firewall rules on routers, firewalls and other network and security devices in order to comply with the necessary security, business and regulatory requirements. Technical and business groups don’t communicate After application delivery managers outline the business-level requirements of new or modified applications, network and security architects must translate them into network flows that traverse various web gateways, web servers, application servers, database servers and document repositories. Then firewall administrators and other security professionals have to create firewall rules that allow the right users to connect to the right systems, using appropriate services and protocols. Compliance and risk management officers also get involved to identify potential violations of regulations and corporate policies. These processes are handicapped by several factors: Each group speaks a different business or technical language. Information is siloed, and each group has its own tools for tracking business requirements, network topology, security rules and compliance policies. Data is often poorly documented. Often network and security groups are brought in only at the tail end of the process, when it is too late to prevent bad decisions. Application connectivity is complex The computing infrastructure of even a medium-sized enterprise includes hundreds of servers, storage systems, and network security devices such as firewalls, routers and load balancers. Complexity is magnified by the fact that many application components are now virtualized. Moreover, hybrid cloud architectures are becoming common. And since networking concepts differ profoundly between physical and cloud-based networks, unified visibility and control are very difficult to obtain. Change never stops Business users need access to data – fast! Yet every time a new application is deployed, changed or migrated, network and security staff need to understand how information will flow between the various web, application, database and storage servers. They need to devise application connectivity rules that allow traffic while preventing access from unauthorized users or creating gaps in their security perimeters. Security and compliance require thousands of application connectivity rules Many security policies are required to manage network access and protect confidential data from outside attackers and from unauthorized access by users or employees. In a typical enterprise, customers and businesses are only allowed to access specific web servers in a “demilitarized zone.” Some applications and databases are authorized for all employees, while others are restricted to specific departments or business units or management levels. Government regulations and industry standards require severely controlled access to credit card and financial information, Personally Identifiable Information (PII), Protected Health Information (PHI) and many other types of confidential data. Security best practices often require additional restrictions, such as limiting the use of protocols that can be used to evade security controls. To enforce these policies, IT security teams need to create and manage thousands, tens of thousands, and sometimes even hundreds of thousands of firewall rules on routers, firewalls and other network and security devices in order to comply with the necessary security, business and regulatory requirements. Technical and business groups don’t communicate After application delivery managers outline the business-level requirements of new or modified applications, network and security architects must translate them into network flows that traverse various web gateways, web servers, application servers, database servers and document repositories. Then firewall administrators and other security professionals have to create firewall rules that allow the right users to connect to the right systems, using appropriate services and protocols. Compliance and risk management officers also get involved to identify potential violations of regulations and corporate policies. These processes are handicapped by several factors: Each group speaks a different business or technical language. Information is siloed, and each group has its own tools for tracking business requirements, network topology, security rules and compliance policies. Data is often poorly documented. Often network and security groups are brought in only at the tail end of the process, when it is too late to prevent bad decisions. Schedule a Demo The lifecycle approach to managing application connectivity and security policies Most enterprises take an ad-hoc approach to managing application connectivity. They jump to address the connectivity needs of high-profile applications and imminent threats, but have little time left over to maintain network maps, document security policies and firewall rules, or to analyze the impact of rule changes on production applications. They are also hard-pressed to translate dozens of daily change requests from business terms into complex technical details. The costs of these dysfunctional processes include: Loss of business agility, caused by delays in releasing applications and improving infrastructure. Application outages and lost productivity, caused by errors in updating rules and configuring systems. Inflexibility, when administrators refuse to change existing rules for fear of “breaking” existing information flows. Increased risk of security breaches, caused by gaps in security and compliance policies, and by overly permissive security rules on firewalls and other devices. Costly demands on the time of network and security staff, caused by inefficient processes and high audit preparation costs. IT security groups will always have to deal with complex networks and constantly changing applications. But given these challenges, they can manage application connectivity and security policies more effectively using a lifecycle framework such as the one illustrated in Figure 1. This lifecycle approach captures all the major activities that an IT organization should follow when managing change requests that affect application connectivity and security policies, organized into five stages. Figure 1: The Network Security Policy Lifecycle Structure activities and reduce risks A lifecycle approach ensures that the right activities are performed in the right order, consistently. This is essential to reducing risks. For example, failing to conduct an impact analysis of proposed firewall rule changes can lead to service outages when the new rules inadvertently block connections between components of an application. While neglecting to monitor policies and recertify rules can result in overly permissive or unnecessary rules that facilitate data breaches. A structured process also reduces unnecessary work and increases business agility. For example, a proactive risk and compliance assessment during the Plan & Assess stage of the lifecycle can identify requirements and prevent errors before new rules are deployed onto security and network devices. This reduces costly, time-consuming and frustrating “fire drills” to fix errors in the production environment. A defined lifecycle also gives network and security professionals a basis to resist pressures to omit or shortchange activities to save time today, which can cause higher costs and greater risks tomorrow. Automate processes The only way IT organizations can cope with the complexity and rapid change of today’s infrastructure and applications is through automation. A lifecycle approach to security policy management helps enterprises structure their processes to be comprehensive, repeatable and automated. When enterprises automate the process of provisioning security policies, they can respond faster to changing business requirements, which makes them more agile and competitive. By reducing manual errors and ensuring that key steps are never overlooked, they also avoid service outages and reduce the risk of security breaches and compliance violations. Automation also frees security and networking staffs so they have time to spend on strategic initiatives, rather than on routine “keep the lights on” tasks. Ultimately, it permits enterprises to support more business applications and greater business agility with the same staff. Enable better communication A lifecycle approach to security policy management improves communication across IT groups and their senior management. It helps bring together application delivery, network, security, and compliance people in the Discover & Visualize and Plan & Assess stages of the lifecycle, to make sure that business requirements can be accurately translated into infrastructure and security changes. The approach also helps coordinate the work of network, security and operations staffs in the Migrate & Deploy, Maintain and Decommission stages, to ensure that deployment and operational activities are executed smoothly. And it helps IT and business executives communicate better about the security posture of the enterprise. Document the environment In most enterprises security policies are poorly documented. Reasons include severe time pressures on network and security staff, and tools that make it hard to record and share policy and rule information (e.g., spreadsheets and bug tracking systems designed for software development teams). The result is minor time savings in the short run (“we’ll document that later when we have more time”) at the cost of more work later, lack of documentation needed for audits and compliance verification, and the greater risk of service outages and data breaches. Organizations that adopt a lifecycle approach build appropriate self-documenting processes into each step of the lifecycle. We will now look at how these principles and practices can be implemented in each of the five stages of a security policy management lifecycle. Schedule a Demo Stage 1: Discover & visualize The first stage of the security policy management lifecycle is Discover & Visualize. This phase is key to successful security policy management. It gives IT organizations an accurate, up-to-date mapping of their application connectivity across on-premises, cloud, and software-defined environments. Without this information, IT staff are essentially working blind, and will inevitably make mistakes and encounter problems down the line. While discovery may sound easy, for most IT organizations today it is extremely difficult to perform. As discussed earlier, most enterprises have hundreds or thousands of systems in their enterprise infrastructure. Servers and devices are constantly being added, removed, upgraded, consolidated, distributed, virtualized, and moved to the cloud. Few organizations can maintain an accurate, up-to-date map of their application connectivity and network topology, and it can take months to gather this information manually Fortunately, security policy management solutions can automate the application connectivity discovery, mapping, and documentation processes (see Figure 2). These products give network and security staffs an up-to-date map of their application connectivity and network topology, eliminating many of the errors caused by out-of-date (or missing) information about systems, connectivity flows, and firewall rules. In addition, the mapping process can help business and technical groups develop a shared understanding of application connectivity requirements. Figure 2: Auto discover, map and visualize application connectivity and security infrastructure Schedule a Demo Stage 2: Plan & assess Once an enterprise has a clear picture of its application connectivity and network infrastructure, it can effectively start to plan changes. The Plan & Assess stage of the lifecycle includes activities that ensure that proposed changes will be effective in providing the required connectivity, while minimizing the risks of introducing vulnerabilities, causing application outages, or violating compliance requirements. Typically, this stage involves: Translating business application connectivity requests, typically defined in business terms, into networking terminology that security staff can understand and implement. Analyzing the network topology, to determine if the requested changes are really needed (typically 30% of requests require no changes). Conducting a proactive impact analysis of proposed rule changes to understand in advance how they will affect other applications and processes. Performing a risk and compliance assessment, to make sure that the changes don’t open security holes or cause compliance violations (see Figure 3). Assessing inputs from vulnerabilities scanners and SIEM solutions to understand business risk. Many organizations perform these activities only periodically, in conjunction with audits or as part of a major project. They omit impact analysis for “minor” change requests and even when they perform risk assessments, they often focus on firewall rules and ignore the wider business application implications. Yet automating these analysis and assessment activities and incorporating them as part of a structured lifecycle process helps keep infrastructure and security data up to date, which saves time overall and prevents bad decisions from being made based on outdated information. It also ensures that key steps are not omitted, since even a single configuration error can cause a service outage or set the stage for a security breach. Impact analysis is particularly valuable when cloud-based applications and services are part of the project as it is often extremely difficult to predict the effect of rule changes when deployed to the cloud. Figure 3: Proactively assess risk and compliance for each security policy change Schedule a Demo Stage 3: Migrate & deploy The process of deploying connectivity and security rules can be extremely labor-intensive when it involves dozens of firewalls, routers, and other network security devices. It is also very error-prone. A single “fat-finger” typing mistake can result in an outage or a hole in the security perimeter. Security policy management solutions automate critical tasks during this stage of the lifecycle, including: Designing rule changes intelligently based on security, compliance and performance considerations. Automatically migrating these rules using intuitive workflows (see Figure 4). Pushing policies to firewalls and other security devices, both on-premise and on cloud platforms – with zero touch if no exceptions are detected (see Figure 5). Validating that the intended changes have been implemented correctly. Many enterprises overlook the validation process and fail to check that rule changes have been pushed to devices and activated successfully. This can create the false impression that application connectivity has been provided, or that vulnerabilities have been removed, when in fact there are time bombs ticking in the infrastructure. By automating these tasks, IT organizations can speed up application deployments, as well as ensure that rules are accurate and consistent across different security devices. Automated deployment also eliminates the need to perform many routine maintenance tasks and therefore frees up security professionals for more strategic tasks. Figure 4: Automate firewall rule migration through easy-to-use workflows Figure 5: Deploy security changes directly onto devices with zero touch Schedule a Demo Stage 4: Maintain In the rush to support new applications and technologies, many IT security teams ignore, forget or put off activities related to monitoring and maintaining their security policy – despite the fact that most firewalls accumulate thousands of rules and objects which become out-of-date or obsolete over the years. Typical symptoms of cluttered and bloated rulesets include: Overly permissive rules that create gaps in the network security perimeter which cybercriminals can use to attack the enterprise. Excessively complicated tasks in areas such as change management, troubleshooting and auditing. Excessive audit preparation costs to prove that compliance requirements are being met, or conversely audit failures because overly permissive rules allow violations. Slower network performance, because proliferating rules overload network and security devices. Decreased hardware lifespan and increased TCO for overburdened security devices. Cleaning up and optimizing security policies on an ongoing basis can prevent these problems (see Figure 6). Activities include: Identifying and eliminating or consolidating redundant and conflicting rules. Tightening rules that are overly permissive (for example, allowing network traffic from ANY source to connect to ANY destination using ANY protocol). Reordering rules for better performance. Recertifying expired rules based on security and business needs (see Figure 7). Continuously documenting security rules and their compliance with regulations and corporate policies. Figure 6: Automatically clean up and optimize security policies Automating these maintenance activities helps IT organizations move towards a “clean,” well-documented set of security rules so they can prevent business application outages, compliance violations, security holes, and cyberattacks. It also reduces management time and effort. Another key benefit of ongoing maintenance of security policy rules is that it significantly reduces audit preparation efforts and costs by as much as 80% (see Figure 8). Preparing firewalls for a regulatory or internal audit is a tedious, time-consuming and error-prone process. Moreover, while an audit is typically a point-in-time exercise, most regulations today require enterprises to be continually compliant, which can be difficult to achieve with bloated and ever-changing rule bases. Figure 7: Review and recertify rules based on security and business needs Figure 8: Significantly reduce audit preparation efforts and costs with automated audit reports Schedule a Demo Stage 5: Decommission Every business application eventually reaches the end of its life. At that point some or all of its security policies become redundant. Yet when applications are decommissioned, their policies are often left in place, either from oversight or out of fear that removing policies could negatively affect active business applications. These obsolete or redundant security policies increase the enterprise’s attack vector and add clutter, without providing any business value.A lifecycle approach to managing application connectivity and security policies reduces the risk of application outages and data breaches caused by obsolete rules. It provides a structured and automated process for identifying and safely removing redundant firewall rules as soon as applications are decommissioned, while verifying that their removal will not impact active applications or create compliance violations (see Figure 9). Figure 9: Automatically and safely remove redundant firewall rules when applications are decommissioned Schedule a Demo Summary Network and security operations should never be a bottleneck to business agility, and must be able to respond rapidly to the ever-changing needs of the business. The solution is to move away from a reactive, fire-fighting response to business challenges and adopt a proactive lifecycle approach to managing application connectivity and security policies that will enable IT organizations to achieve critical business objectives such as: Increasing business agility by speeding up the delivery of business continuity and business transformation initiatives. Reducing the risk of application outages due to errors when creating and deploying connectivity and security rules. Reducing the risk of security breaches caused by gaps in security and compliance policies and overly permissive security rules. Freeing up network and security professionals from routine tasks so they can work on strategic projects. Schedule a Demo About AlgoSec AlgoSec is a global cybersecurity company and the industry’s only application connectivity and security policy management expert. With almost two decades of leadership in Network Security Policy Management, over 1,800 of the world’s most complex organizations trust AlgoSec to help secure their most critical workloads across public cloud, private cloud, containers, and on-premises networks. Let's start your journey to our business-centric network security. Schedule a Demo Select a size Introduction Why is it so hard to manage application and network connectivity? The lifecycle approach to managing application connectivity and security policies Stage 1: Discover & visualize Stage 2: Plan & assess Stage 3: Migrate & deploy Stage 4: Maintain Stage 5: Decommission Summary About AlgoSec Get the latest insights from the experts Choose a better way to manage your network

  • AlgoSec | 5 Best Network Vulnerability Scanning Tools in 2024

    Network vulnerability scanning provides in-depth insight into your organization’s security posture and highlights the specific types of... Network Security 5 Best Network Vulnerability Scanning Tools in 2024 Tsippi Dach 2 min read Tsippi Dach Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 2/11/24 Published Network vulnerability scanning provides in-depth insight into your organization’s security posture and highlights the specific types of vulnerabilities attackers may exploit when targeting it. These tools work by systematically scanning your network environment — including all desktops, laptops, mobile endpoints, servers, and other assets for known weaknesses and misconfigurations. Your analyzer then produces a detailed report that tells you exactly how hackers might breach your systems. Find out how these important tools contribute to successfully managing your security policies and protecting sensitive assets from cybercriminals and malware. What is Network Vulnerability Management? Network vulnerability scanners are cybersecurity solutions typically delivered under a software-as-a-service (SaaS) model. These solutions match your network asset configurations with a comprehensive list of known misconfigurations and security threats, including unpatched software, open ports, and other security issues. By comparing system details against a comprehensive database of known vulnerabilities, network scanning helps pinpoint areas of weakness that could potentially be exploited by threat actors. This proactive approach is essential for maintaining robust network security and protecting sensitive data from unauthorized access and cyberattacks. This provides your organization with several valuable benefits: Early detection of known security vulnerabilities. If your organization is exposed to security threats that leverage known vulnerabilities, you’ll want to address these security gaps as soon as possible. Comprehensive data for efficient risk management. Knowing exactly how many security vulnerabilities your organization is exposed to gives you clear data for conducting in-depth risk management . Regulatory compliance. Many regulatory compliance frameworks like SOC 2, ISO 27001, and PCI DSS require organizations to undergo regular vulnerability scanning. Reduced costs. Automating the process of scanning for vulnerabilities reduces the costs associated with discovering and remediating security weaknesses manually. Key Features and Functions The best network security vulnerability scanners have several important features in common: Prioritized vulnerability assessment tools. You need to be able to assess and prioritize vulnerabilities based on their severity. This allows you to commit security resources to addressing high-priority vulnerabilities first, and taking care of low-impact weaknesses afterwards. Automation and real-time analysis. Manual scanning is a difficult and time-consuming process. Your vulnerability scanner must support automated, ongoing scanning for real-time vulnerability detection, providing on-demand insights into your security risk profile. Integration with remediation tools: The best network vulnerability scanners integrate with other security tools for quick mitigation and remediation. This lets security teams quickly close security gaps and move on to the next, without having to spend time accessing and managing a separate set of security tools. How Network Vulnerability Scanning Tools Work Step 1. Scanning Process Initial network mapping is the first step in the vulnerability scanning process. At this point, your scanner maps your entire network and identifies every device and asset connected to it. This includes all web servers, workstations, firewalls , and network devices. The automatic discovery process should produce a comprehensive map showing how your network is connected, and show detailed information about each network device. It should include comprehensive port scanning to identify open ports that attackers could use to gain entry to the network. Step 2. Detection Techniques The next step in the process involves leveraging advanced detection techniques to identify known vulnerabilities in the network. Most network vulnerability scanners rely on two specific techniques to achieve this: Signature-Based Detection: The scanner checks for known vulnerabilities by comparing system details against a database of known issues. This database is drawn from extensive threat intelligence feeds and public records like the MITRE CVE Program . Heuristic Analysis: This technique relies on heuristic and behavioral techniques to identify unknown or zero-day vulnerabilities based on unusual system behavior or configurations. It may detect suspicious activities that don’t correspond to known threats, prompting further investigation. Step 3. Vulnerability Identification This step involves checking network assets for known vulnerabilities according to their unique risk profile. This includes scanning for outdated software and operating system versions, and looking for misconfigurations in network devices and settings. Most network scanners achieve this by pinging network-accessible systems, sending them TCP/UDP packets, and remotely logging into compatible systems to gather detailed information about them. Highly advanced network vulnerability scanning tools have more comprehensive sets of features for identifying these vulnerabilities, because they recognize a wider, more up-to-date range of network devices. Step 4. Assessment and Reporting This step describes the process of matching network data to known vulnerabilities and prioritizing them based on their severity. Advanced network scanning devices may use automation and sophisticated scripting to produce a list of vulnerabilities and exposed network components. First, each vulnerability is assessed for its potential impact and risk level, often based on industry-wide compliance standards like NIST. Then the tool prioritizes each vulnerability based on its severity, ease of exploitation, and potential impact on the network. Afterwards, the tool generates a detailed report outlining every vulnerability assessed and ranking it according to its severity. These reports guide the security teams in addressing the identified issues. Step 5. Continuous Monitoring and Updates Scanning for vulnerabilities once is helpful, but it won’t help you achieve the long-term goal of keeping your network protected against new and emerging threats. To do that, you need to continuously monitor your network for new weaknesses and establish workflows for resolving security issues proactively. Many advanced scanners provide real-time monitoring, constantly scanning the network for new vulnerabilities as they emerge. Regular updates to the scanner’s vulnerability database ensure it can recognize the latest known vulnerabilities and threats. If your vulnerability scanner doesn’t support these two important features, you may need to invest additional time and effort into time-consuming manual operations that achieve the same results. Step 6. Integration with Other Security Measures Security leaders must pay close attention to what happens after a vulnerability scan detects an outdated software patch or misconfiguration. Alerting security teams to the danger represented by these weaknesses is only the first step towards actually resolving them, and many scanning tools offer comprehensive integrations for launching remediation actions. Remediation integrations are valuable because they allow security teams to quickly address vulnerabilities immediately upon discovering them. The alternative is creating a list of weaknesses and having the team manually go through them, which takes time and distracts from higher-impact security tasks. Another useful integration involves large-scale security posture analytics. If your vulnerability assessment includes analysis and management tools for addressing observable patterns in your network vulnerability scans, it will be much easier to dedicate resources to the appropriate security-enhancing initiatives. Choosing a Network Vulnerability Scanning Solution There are two major categories of features that network vulnerability scanning tools must offer in order to provide best-in-class coverage against sophisticated threats. Keep these aspects in mind when reviewing your options for deploying vulnerability scans in your security workflow. Important Considerations Comprehensive Vulnerability Database. Access to an extensive CVE database is vital. Many of these are open-source and available to the general public, but the sheer number of CVE records can drag down performance. The best vulnerability management tools have highly optimized APIs capable of processing these records quickly. Customizability and Templates. Tailoring scans to specific needs and environments is important for every organization, but it takes on special significance for organizations seeking to demonstrate regulatory compliance. That’s because the outcome of compliance assessments and audits will depend on the quality of data included in your reports. False Positive Management. All vulnerability scanners are susceptible to displaying false positives, but some manage these events better than others. This is especially important in misconfiguration cases, because it can cause security teams to mistakenly misconfigure security tools that were configured correctly in the first place. Business Essentials Support for Various Platforms. Your vulnerability scan must ingest data from multiple operating systems like Windows, Linux, and a variety of cloud platforms. If any of these systems are not compatible with the scanning process, you may end up with unstable performance or unreliable data. Reporting and Analytics. Detailed reports and analytics help you establish a clear security posture assessment. Your vulnerability management tool must provide clear reports that are easy for non-technical stakeholders to understand. This will help you make the case for necessary security investments in the future. Scalability and Flexibility. These solutions must scale with the growth of your organization’s IT infrastructure . Pay attention to the usage and payment model each vulnerability scanning vendor uses. Some of them may be better suited to small, growing organizations while others are more appropriate for large enterprises and government agencies. Top 5 Network Vulnerability Scanning Providers 1. AlgoSec AlgoSec is a network security platform that helps organizations identify vulnerabilities and orchestrate network security policies in response. It includes comprehensive features for managing firewalls routers , and other security device configurations, and enables teams to proactively scan for new vulnerabilities on their network. AlgoSec reports on misconfigurations and vulnerabilities, and can show how simulated changes to IT infrastructure impact the organization’s security posture. It provides in-depth visibility and control over multi-cloud and on-premises environments. Key features: Comprehensive network mapping. AlgoSec supports automatic network asset discovery, giving security teams complete coverage of the hybrid network. In-depth automation. The platform supports automatic security policy updates in response to detected security vulnerabilities, allowing security teams to manage risk proactively. Detailed risk analysis. When AlgoSec detects a vulnerability, it provides complete details and background on the vulnerability itself and the risk it represents. 2. Tenable Nessus Tenable Nessus is one of the industry’s most reputable names in vulnerability assessment and management. It is widely used to identify and fix vulnerabilities including software flaws, missing security patches, and misconfigurations. It supports a wide range of operating systems and applications, making it a flexible tool for many different use cases. Key features: High-speed discovery. Tenable supports high speed network asset discovery scans through advanced features. Break up scans into easily managed subnetworks and configure ping settings to make the scan faster. Configuration auditing. Security teams can ensure IT assets are compliant with specific compliance-oriented audit policies designed to meet a wide range of assets and standards. Sensitive data discovery. Tenable Nessus can discover sensitive data located on the network and provide clear, actionable steps for protecting that data in compliance with regulatory standards. 3. Rapid7 Nexpose Nexpose offers real-time monitoring and risk assessment designed for enterprise organizations. As an on-premises vulnerability scanner, the solution is well-suited to the needs of large organizations with significant IT infrastructure deployments. It collects vulnerability information, prioritizes it effectively, and provides guidance on remediating risks. Key Features: Enterprise-ready on-premises form factor. Rapid7 designed Nexpose to meet the needs of large organizations with constant vulnerability scanning needs. Live monitoring of the attack surface. Organizations can continuously scan their IT environment and prioritize discovered vulnerabilities using more than 50 filters to create asset groups that correspond to known threats. Integration with penetration testing. Rapid7 comes with a wide range of fully supported integrations and provides vulnerability and exploitability context useful for pentest scenarios. 4. Qualys Qualys is an enterprise cloud security provider that includes vulnerability management in its IT security and compliance platform. It includes features that help security teams understand and manage security risks while automating remediation with intuitive no-code workflows. It integrates well with other enterprise security solutions, but may not be accessible for smaller organizations. Key features: All-in-one vulnerability management workflow . Qualys covers all of your vulnerability scanning and remediation needs in a single, centralized platform. It conducts asset discovery, detects vulnerabilities, prioritizes findings, and launches responses with deep customization and automation capabilities. Web application scanning . The platform is well-suited to organizations with extensive public-facing web applications outside the network perimeter. It supports container runtime security, including container-as-a-service environments. Complete compliance reporting . Security teams can renew expiring certificates directly through Qualys, making it a comprehensive solution to obtaining and maintaining compliance. 5. OpenVAS (Greenbone Networks) OpenVAS is an open-source tool that offers a comprehensive scanning to organizations of all sizes. It is available under a General Public License (GPL) agreement, making it a cost-effective option compared to competing proprietary software options. It supports a range of customizable plugins through its open source developer community. Key Features: Open-source vulnerability scanner. Organizations can use and customize OpenVAS at no charge, giving it a significant advantage for organizations that prioritize cost savings. Customizable plugins. As with many open-source tools, there is a thriving community of developers involved in creating customizable plugins for unique use cases. Supports a wide range of vulnerability tests . The high level of customization offered by OpenVAS allows security teams to run many different kinds of vulnerability tests from a single, centralized interface. Honorable Mentions Nmap (Network Mapper): A versatile and free open-source tool, NMAP is popular for network discovery and security auditing. It’s particularly noted for its flexibility in scanning both large networks and single hosts. Nmap is a powerful and popular Linux command-line tool commonly featured in cybersecurity education courses. Microsoft’s Azure Security Center: Ideal for organizations heavily invested in the Azure cloud platform, this tool provides integrated security monitoring and policy management across hybrid cloud workloads. It unifies many different security features, including vulnerability assessment, proactive threat hunting, and more. IBM Security QRadar Vulnerability Manager: This is a comprehensive solution that integrates with other IBM QRadar products, providing a full-spectrum view of network vulnerabilities. It’s especially valuable for enterprises that already rely on IBM infrastructure for security workflows. McAfee Vulnerability Manager: A well-known solution offering robust vulnerability scanning capabilities, with additional features for risk and compliance management. It provides a combination of active and passive monitoring, along with penetration testing and authentication scanning designed to provide maximum protection to sensitive network assets. Choosing the Right Vulnerability Management Tool Choosing the right vulnerability management tool requires in-depth knowledge of your organization’s security and IT infrastructure context. You need to select the tool that matches your unique use cases and security requirements while providing the support you need to achieve long-term business goals. Those goals may change over time, which makes ongoing evaluation of your security tools an even more important strategic asset to keep in your arsenal. Gathering clear and detailed information about your organization’s security posture allows you to flexibility adapt to changes in your IT environment without exposing sensitive assets to additional risk. AlgoSec provides a wide range of flexible options for vulnerability scanning, policy change management, and proactive configuration simulation. Enhance your organization’s security capabilities by deploying a vulnerability management solution that provides the visibility and flexibility you need to stay on top of a challenging industry. Schedule a demo Related Articles 2025 in review: What innovations and milestones defined AlgoSec’s transformative year in 2025? AlgoSec Reviews Mar 19, 2023 · 2 min read Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • Why CNAPP is not enough

    Learn all about CNAPP limitations, why CNAPP is not enough in the cloud, and what additional cloud security pillars businesses need. Why CNAPP is not enough Select a size Which network Can AlgoSec be used for continuous compliance monitoring? Yes, AlgoSec supports continuous compliance monitoring. As organizations adapt their security policies to meet emerging threats and address new vulnerabilities, they must constantly verify these changes against the compliance frameworks they subscribe to. AlgoSec can generate risk assessment reports and conduct internal audits on-demand, allowing compliance officers to monitor compliance performance in real-time. Security professionals can also use AlgoSec to preview and simulate proposed changes to the organization’s security policies. This gives compliance officers a valuable degree of lead-time before planned changes impact regulatory guidelines and allows for continuous real-time monitoring. Executive summary: Why CNAPP is not enough Cloud native application protection platforms (CNAPPs) are unified security platforms that consolidate a diverse suite of tools and capabilities into a single solution. Widely adopted across industries, the cloud native application protection platform market is projected to reach $19.3 billion by 2027, a CAGR of almost 20% from 2022. These cloud security platforms are often positioned as "all-in-one" or "end-to-end" fortifications for contemporary cloud environments. However, a pressing question persists: Are CNAPPs enough? The dominant assumption is that CNAPPs can single-handedly tackle all enterprise cloud security requirements. However, enterprises should be aware of some critical CNAPP limitations; these can involve: Application security Network security Policy management Without addressing the cloud security blind spots of CNAPPs, minor vulnerabilities can escalate into significant security and compliance incidents. This article dives into the reasons why CNAPPs are so popular, what capabilities they offer, and how companies can transcend their limitations. Why are enterprises embracing cloud-native application protection platforms? CNAPPs are unified and integrated cloud security platforms, promising robust and centralized governance, security, and compliance control and oversight. They’re a captivating option when dealing with complex multi-cloud and hybrid cloud architectures. Setting CNAPP limitations aside for a moment, let’s explore what tools and capabilities these popular cloud security platforms feature. Cloud security posture management (CSPM) CSPM tools continuously monitor and scan IaaS, PaaS, and SaaS infrastructure for misconfigurations and risks. They also support triage and remediation of any cloud misconfigurations identified. Cloud infrastructure entitlement management (CIEM) CIEM tools are the cloud-native version of identity and access management (IAM) solutions. They detect and mitigate identity-related risks such as overprivileged accounts and subpar password policies. Cloud workload protection Cloud workload protection solutions monitor cloud-native workloads across hybrid and multi-cloud architectures for threats. Workloads in the cloud may refer to data, applications, serverless functions, containers, or virtual machines. But do cloud workload protection tools provide comprehensive runtime security and application security? More on that soon. External attack surface management (EASM) EASM tools focus on inventorying, monitoring, and reducing risks across public-facing digital assets. The overall objective of EASM solutions is to minimize the cloud attack surface and reveal blind spots. Container and Kubernetes security Container and Kubernetes security capabilities are crucial components of cloud security platforms, focusing on managing and fortifying containerized applications across multi-cloud environments. Vulnerability management Vulnerability management tools proactively scan cloud layers (workloads, APIs, applications, and data) for misconfigurations like insecure APIs, unencrypted data, and excessive permissions. As highlighted above, cloud native application protection platforms are equipped with a diverse and dynamic range of tools. However, risk-ridden cloud security blind spots make these tools insufficient for complete visibility and coverage across complex environments. CNAPP limitations and cloud security blind spots The features covered in the previous section are essential cloud security pillars. Nevertheless, CNAPPs aren't all-encompassing. This section examines these cloud native application protection platforms' biggest cloud security blind spots. In other words, why CNAPP is not enough. Inadequate hybrid cloud coverage One of the biggest cloud security blind spots businesses face? Legacy architecture. CNAPPs are purpose-built to operate in cloud environments. That means, companies with on-premises or hybrid setups might struggle to achieve interconnected visibility and security—even with strong CSPM or cloud workload protection tools. Disproportionate focus on runtime security Runtime security is in the CNAPP wheelhouse. However, some cloud security platforms over-emphasize runtime security and lack coverage in the initial stages of application pipelines. This incomplete visibility is a major application security vulnerability. Remember: A strong runtime security posture doesn’t make up for subpar application security capabilities. Lack of application visibility and context Modern multi-cloud and hybrid environments are primarily made up of applications . While the term “cloud native application security platform” suggests robust application security, CNAPPs often lack deep visibility into applications and their connectivity flows. CNAPP limitations also include a lack of application context: Businesses might know what applications they have, but they may not be able to map broader network security risks to specific applications. Incomplete network security CNAPPs have various features and telemetry capabilities that support cloud network security, but they lack advanced network security controls and tools. For example, CNAPPs can’t fine-tune firewalls, conduct deep packet inspections, or establish network traffic rules. Subpar API security Cloud native application protection platforms don’t always have deep API security capabilities. This is an issue, given APIs are an increasingly prevalent attack vector for adversaries. Weak API security is an application security vulnerability because without API visibility and context, it’s impossible to map application dependencies and identity misconfigurations. Restricted DevSecOps support CNAPPs can help security teams shift left, but they’re not a comprehensive DevSecOps powerhouse. This is due to many of the above-mentioned deficiencies: fractured application and connectivity visibility, as well as a lack of advanced network security options. In complex hybrid cloud architectures, these weaknesses complicate compliance and policy management—and consequently compromise DevSecOps programs. What additional layers of security do enterprises need? Cloud native application protection platform components like CSPM and CIEM are critical security pillars, but it’s evident that CNAPP is not enough for businesses today. Let’s discuss what additional capabilities you need. Advanced application security With applications dominating enterprise IT environments, companies need a cutting-edge application security tool with complete hybrid coverage, as well as connectivity and dependency mapping. Must-have features include deep application contextualization and the ability to map network risks to specific applications. Network security posture management (NSPM) Achieving visibility, security, and compliance across hybrid networks isn’t straightforward, which is why businesses need a strong NSPM tool. Top NSPM solutions enable businesses to visualize their network topology and apply unique firewall rules to understand, control, and secure traffic. They also help businesses enforce zero trust tenets like least privilege and network micro-segmentation. Automated security policy management Cloud environments are dynamic and constantly in flux, making policy and configuration management a tricky endeavor. The initial challenge is designing the right policies, but the bigger complexity is enforcing them consistently without compromising speed or scale. And that’s exactly what the best policy management tools do: Automate every step of the lifecycle, from risk analysis and policy design to implementation and validation. Hybrid cloud compliance management The underlying challenge across every pillar of cloud security, from API security to safe DevSecOps workflows, is ensuring compliance. Today, enterprises have a labyrinth of regulatory requirements they need to adhere to—from GDPR and SOX to industry-specific regulations like HIPAA. You need a compliance tool that can: Generate audit-ready reports Automatically vet policy change requests against compliance requirements Automatically discover traffic flows The benefits of transcending CNAPP limitations There are multiple benefits that enterprises can unlock by adding additional layers of security, such as those discussed above: Reinforced application security posture: Complete and contextual application visibility across the entire lifecycle Enhanced hybrid cloud governance: Control over hybrid cloud infrastructure, applications, data, security tools, and policies Fewer data breaches: Avoidance of the financial, legal, and reputational consequences of suffering data breaches (now featuring an average cost of $4.4 million, according to IBM ) Stronger compliance posture: Adherence to federal, local, and industry-specific laws and regulations More developer-friendly environments: Streamlined and optimized DevSecOps workflows; high-speed development with zero security compromises Boosted cloud performance: Major productivity gains and increased cloud ROI via optimized hybrid cloud governance To wrap up, it’s time to meet the cloud security platform that can help enterprises plug traditional CNAPP gaps and provide comprehensive hybrid cloud security. AlgoSec: A cloud security platform built for modern challenges AlgoSec is a cutting-edge cloud security solution that reinforces every CNAPP pillar while also addressing the most critical CNAPP limitations. AlgoSec Cloud Enterprise (ACE) streamlines every aspect of complex hybrid cloud security, including with automated compliance and policy management. From its emphasis on application visibility and security to zero-touch change management, ACE, along with supporting tools such as AppViz , FireFlow , and Firewall Analyzer , plugs every CNAPP gap and reinforces your overall cloud security posture. No, CNAPP is not enough, and enterprises should swiftly adopt an application-centric hybrid cloud security platform like AlgoSec to achieve the additional layers of cloud security needed in today’s threat landscape. To learn more about how AlgoSec strengthens everything from API security to DevSecOps workflows, and see why over 2,200 companies are already using it, request a demo today. FAQs What are some key CNAPP limitations? CNAPP limitations include excessive emphasis on runtime security, incomplete application security and visibility, weak API security, and DevSecOps deficiencies. What is cloud security posture management (CSPM)? CSPM tools are security solutions that monitor cloud-native infrastructure for security risks and misconfigurations. What is cloud infrastructure entitlement management (CIEM)? CIEM is a type of cloud security tool that focuses on IAM risks in cloud environments. Get the latest insights from the experts Schedule time with one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Continue

  • Firewall rule cleanup & performance optimization tool

    Efficiently improve network security and performance by cleaning up and optimizing your firewall rules Streamline operations and meet compliance requirements with ease Firewall rule cleanup & performance optimization tool Select a size Which network Can AlgoSec be used for continuous compliance monitoring? Yes, AlgoSec supports continuous compliance monitoring. As organizations adapt their security policies to meet emerging threats and address new vulnerabilities, they must constantly verify these changes against the compliance frameworks they subscribe to. AlgoSec can generate risk assessment reports and conduct internal audits on-demand, allowing compliance officers to monitor compliance performance in real-time. Security professionals can also use AlgoSec to preview and simulate proposed changes to the organization’s security policies. This gives compliance officers a valuable degree of lead-time before planned changes impact regulatory guidelines and allows for continuous real-time monitoring. Streamlining firewall policies: cleanup & optimization Dangers of outdated firewall rulesets How to audit your existing firewall policy How to properly perform a firewall cleanup Firewall optimization best practices Automate firewall configurations with AlgoSec Get the latest insights from the experts Use these six best practices to simplify compliance and risk mitigation with the AlgoSec Copy White paper Learn how AlgoSec can help you pass PCI-DSS Audits and ensure Copy Solution overview See how this customer improved compliance readiness and risk Copy Case study Schedule time with one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Continue

  • AlgoSec launches its AI-powered Security Platform, to securely manage application-centric connectivity and remediate risk in real time

    The new release deploys advanced AI for fast and accurate application discovery, provides clear visualization and mapping of application connectivity and potential security risks in complex hybrid environments AlgoSec launches its AI-powered Security Platform, to securely manage application-centric connectivity and remediate risk in real time The new release deploys advanced AI for fast and accurate application discovery, provides clear visualization and mapping of application connectivity and potential security risks in complex hybrid environments September 25, 2024 Speak to one of our experts RIDGEFIELD PARK, NJ, September 25, 2024 – Global cybersecurity leader AlgoSec has launched its newest Security Management platform version, featuring advanced artificial intelligence (AI) technology that provides an application-centric security approach and a clearer picture of risks and their impact. With this new release, the AlgoSec platform enables users to accurately identify the business applications running in their complex hybrid network, and leverage intelligent change automation to streamline security change processes, thus improving security and agility. “Security professionals are overwhelmed with a barrage of alerts that provide no context between critical threats and minor issues,” said Eran Shiff , VP Product of AlgoSec. “By mapping applications, security teams can understand their criticality, automate changes and prioritize alerts that truly matter, saving countless hours through automation.” Gartner predicts that by 2027, 50 percent of critical enterprise applications will reside outside of centralized public cloud locations, underscoring the complexity that network infrastructures face. Today’s networks are 100 times more complex than they were 10 years ago, and the pace of deployment and development at which security teams are expected to work is 100 times faster. AI-powered application discovery enhances a security team’s ability to detect and respond to threats in real-time. An application-centric approach automates change management processes, identifies security risks and mitigates risks before they impact the network infrastructure. “In today’s evolving cyber landscape, it’s essential that we rapidly identify and prioritize threats as they occur,” said Robert Eldridge, Security Solutions Director of Natilik. “AlgoSec’s AI-powered platform helps us deliver proactive network visibility and risk mitigation to our clients, keeping them ahead of potential threats”. Securing hybrid infrastructures relies on four pillars that are essential to AlgoSec’s platform update: ● AI-driven application discovery – Advanced AI feature designed to automatically discover and identify the business applications that are running by correlating them to security changes that have been made. ● Intelligent and automated application connectivity change – New enhancements allow security professionals to directly adjust existing Microsoft Azure firewall rules for new application connections. Additionally, there’s added support for application awareness in Check Point R80+ firewalls. ● Reduce risk exposure and minimize attack surface – New features focus on tightening security posture and minimizing potential vulnerabilities. It streamlines Microsoft Azure Firewall rule management by identifying and recommending the removal of unused rules. It reduces risk exposure by automatically generating change management tickets to eliminate overly permissive rules. Additionally, it ensures compliance with the latest ASD-ISM regulations. ● Better visibility across complex hybrid networks – AlgoSec has enriched its capabilities to support visibility of network security devices including: NSX-T Gateway Firewall, Azure Load Balancer, and Google Cloud map and traffic path (in early availability). To learn more about updates to the AlgoSec Security Management platform, click here . AlgoSec will demonstrate the key capabilities of release A33 during its upcoming annual AlgoSummit user event. To register, click here . About AlgoSec AlgoSec, a global cybersecurity leader, empowers organizations to secure application connectivity and cloud-native applications throughout their multi-cloud and hybrid network. Trusted by more than 1,800 of the world’s leading organizations, AlgoSec’s application-centric approach enables secure acceleration of business application deployment by centrally managing application connectivity and security policies across the public clouds, private clouds, containers, and on-premises networks. Using its unique vendor-agnostic deep algorithm for intelligent change management automation, AlgoSec enables the acceleration of digital transformation projects, helps prevent business application downtime, and substantially reduces manual work and exposure to security risks. AlgoSec’s policy management and CNAPP platforms provide a single source for visibility into security and compliance issues within cloud-native applications as well as across the hybrid network environment, to ensure ongoing adherence to internet security standards, industry, and internal regulations. Learn how AlgoSec enables application owners, information security experts, DevSecOps, and cloud security teams to deploy business applications up to 10 times faster while maintaining security at https://www.algosec.com .  MEDIA CONTACT: Megan Davis Alloy, on behalf of AlgoSec [email protected]

  • Zero trust container analysis system - AlgoSec

    Zero trust container analysis system Download PDF Schedule time with one of our experts Schedule time with one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Continue

  • Merging the Cloud with Application Connectivity | AlgoSec

    Learn the basics of managing multiple workloads in the cloud and how to create a successful enterprise level security management program Webinars Merging the Cloud with Application Connectivity Discover the hottest trends and best practices for application-based security management As more companies make the leap into distributed architecture, the smallest gaps in network security can quickly become targets for attack. While an application-based security strategy can help you protect your hybrid cloud estate better, this shift in focus comes with its own challenges. In this webinar, we discuss: How securing application connectivity plays a key role in hybrid cloud risk management Why application orchestration is critical to managing your network within the hybrid cloud environment How to achieve effective cloud security solutions and best practices To learn more, go to https://www.algosec.com/resources/hub/hybrid_cloud/ September 27, 2022 Hillary Baron Cloud Security Alliance Oren Amiram Director Product Management, Algosec Relevant resources Firewall Rule Recertification with Application Connectivity Keep Reading What is cloud network security? Keep Reading Cloud migration: How to move applications to the cloud Keep Reading Choose a better way to manage your network Choose a better way to manage your network Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Continue

  • AlgoSec | How To Prevent Firewall Breaches (The 2024 Guide)

    Properly configured firewalls are vital in any comprehensive cybersecurity strategy. However, even the most robust configurations can be... Uncategorized How To Prevent Firewall Breaches (The 2024 Guide) Tsippi Dach 2 min read Tsippi Dach Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 1/11/24 Published Properly configured firewalls are vital in any comprehensive cybersecurity strategy. However, even the most robust configurations can be vulnerable to exploitation by attackers. No single security measure can offer absolute protection against all cyber threats and data security risks . To mitigate these risks, it’s crucial to understand how cybercriminals exploit firewall vulnerabilities. The more you know about their tactics, techniques, and procedures, the better-equipped you are to implement security policies that successfully block unauthorized access to network assets. In this guide, you’ll understand the common cyber threats that target enterprise firewall systems with the goal of helping you understand how attackers exploit misconfigurations and human vulnerabilities. Use this information to protect your network from a firewall breach. Understanding 6 Tactics Cybercriminals Use to Breach Firewalls 1. DNS Leaks Your firewall’s primary use is making sure unauthorized users do not gain access to your private network and the sensitive information it contains. But firewall rules can go both ways – preventing sensitive data from leaving the network is just as important. If enterprise security teams neglect to configure their firewalls to inspect outgoing traffic, cybercriminals can intercept this traffic and use it to find gaps in your security systems. DNS traffic is particularly susceptible to this approach because it shows a list of websites users on your network regularly visit. A hacker could use this information to create a spoofed version of a frequently visited website. For example, they might notice your organization’s employees visit a third-party website to attend training webinars. Registering a fake version of the training website and collecting employee login credentials would be simple. If your firewall doesn’t inspect DNS data and confirm connections to new IP addresses, you may never know. DNS leaks may also reveal the IP addresses and endpoint metadata of the device used to make an outgoing connection. This would give cybercriminals the ability to see what kind of hardware your organization’s employees use to connect to external websites. With that information in hand, impersonating managed service providers or other third-party partners is easy. Some DNS leaks even contain timestamp data, telling attackers exactly when users requested access to external web assets. How to protect yourself against DNS leaks Proper firewall configuration is key to preventing DNS-related security incidents. Your organization’s firewalls should provide observability and access control to both incoming and outgoing traffic. Connections to servers known for hosting malware and cybercrime assets should be blocked entirely. Connections to servers without a known reputation should be monitored closely. In a Zero Trust environment , even connections to known servers should benefit from scrutiny using an identity-based security framework. Don’t forget that apps can connect to external resources, too. Consider deploying web application firewalls configured to prevent DNS leaks when connecting to third-party assets and servers. You may also wish to update your security policy to require employees to use VPNs when connecting to external resources. An encrypted VPN connection can prevent DNS information from leaking, making it much harder for cybercriminals to conduct reconnaissance on potential targets using DNS data. 2. Encrypted Injection Attacks Older, simpler firewalls analyze traffic by looking at different kinds of data packet metadata. This provides clear evidence of certain denial-of-service attacks, clear violations of network security policy , and some forms of malware and ransomware . They do not conduct deep packet inspection to identify the kind of content passing through the firewall. This provides cybercriminals with an easy way to bypass firewall rules and intrusion prevention systems – encryption . If malicious content is encrypted before it hits the firewall, it may go unnoticed by simple firewall rules. Only next-generation firewalls capable of handling encrypted data packets can determine whether this kind of traffic is secure or not. Cybercriminals often deliver encrypted injection attacks through email. Phishing emails may trick users into clicking on a malicious link that injects encrypted code into the endpoint device. The script won’t decode and run until after it passes the data security threshold posed by the firewall. After that, it is free to search for personal data, credit card information, and more. Many of these attacks will also bypass antivirus controls that don’t know how to handle encrypted data. Task automation solutions like Windows PowerShell are also susceptible to these kinds of attacks. Even sophisticated detection-based security solutions may fail to recognize encrypted injection attacks if they don’t have the keys necessary to decrypt incoming data. How to protect yourself against encrypted injection attacks Deep packet inspection is one of the most valuable features next-generation firewalls provide to security teams. Industry-leading firewall vendors equip their products with the ability to decrypt and inspect traffic. This allows the firewall to prevent malicious content from entering the network through encrypted traffic, and it can also prevent sensitive encrypted data – like login credentials – from leaving the network. These capabilities are unique to next-generation firewalls and can’t be easily replaced with other solutions. Manufacturers and developers have to equip their firewalls with public-key cryptography capabilities and obtain data from certificate authorities in order to inspect encrypted traffic and do this. 3. Compromised Public Wi-Fi Public Wi-Fi networks are a well-known security threat for individuals and organizations alike. Anyone who logs into a password-protected account on public Wi-Fi at an airport or coffee shop runs the risk of sending their authentication information directly to hackers. Compromised public Wi-Fi also presents a lesser-known threat to security teams at enterprise organizations – it may help hackers breach firewalls. If a remote employee logs into a business account or other asset from a compromised public Wi-Fi connection, hackers can see all the data transmitted through that connection. This may give them the ability to steal account login details or spoof endpoint devices and defeat multi-factor authentication. Even password-protected private Wi-Fi connections can be abused in this way. Some Wi-Fi networks still use outdated WEP and WPA security protocols that have well-known vulnerabilities. Exploiting these weaknesses to take control of a WEP or WPA-protected network is trivial for hackers. The newer WPA2 and WPA3 standards are much more resilient against these kinds of attacks. While public Wi-Fi dangers usually bring remote workers and third-party service vendors to mind, on-premises networks are just as susceptible. Nothing prevents a hacker from gaining access to public Wi-Fi networks in retail stores, receptions, or other areas frequented by customers and employees. How to protect yourself against compromised public Wi-Fi attacks First, you must enforce security policies that only allow Wi-Fi traffic secured by WPA2 and WPA3 protocols. Hardware Wi-Fi routers that do not support these protocols must be replaced. This grants a minimum level of security to protected Wi-Fi networks. Next, all remote connections made over public Wi-Fi networks must be made using a secure VPN. This will encrypt the data that the public Wi-Fi router handles, making it impossible for a hacker to intercept without gaining access to the VPN’s secret decryption key. This doesn’t guarantee your network will be safe from attacks, but it improves your security posture considerably. 4. IoT Infrastructure Attacks Smartwatches, voice-operated speakers, and many automated office products make up the Internet of Things (IoT) segment of your network. Your organization may be using cloud-enriched access control systems, cost-efficient smart heating systems, and much more. Any Wi-Fi-enabled hardware capable of automation can safely be included in this category. However, these devices often fly under the radar of security team’s detection tools, which often focus on user traffic. If hackers compromise one of these devices, they may be able to move laterally through the network until they arrive at a segment that handles sensitive information. This process can take time, which is why many incident response teams do not consider suspicious IoT traffic to be a high-severity issue. IoT endpoints themselves rarely process sensitive data on their own, so it’s easy to overlook potential vulnerabilities and even ignore active attacks as long as the organization’s mission-critical assets aren’t impacted. However, hackers can expand their control over IoT devices and transform them into botnets capable of running denial-of-service attacks. These distributed denial-of-service (DDoS) attacks are much larger and more dangerous, and they are growing in popularity among cybercriminals. Botnet traffic associated with DDoS attacks on IoT networks has increased five-fold over the past year , showing just how promising it is for hackers. How to protect yourself against IoT infrastructure attacks Proper network segmentation is vital for preventing IoT infrastructure attacks . Your organization’s IoT devices should be secured on a network segment that is isolated from the rest of the network. If attackers do compromise the entire network, you should be protected from the risk of losing sensitive data from critical business assets. Ideally, this protection will be enforced with a strong set of firewalls managing the connection between your IoT subnetwork and the rest of your network. You may need to create custom rules that take your unique security risk profile and fleet of internet-connected devices into account. There are very few situations in which one-size-fits-all rulemaking works, and this is not one of them. All IoT devices – no matter how small or insignificant – should be protected by your firewall and other cybersecurity solutions . Never let these devices connect directly to the Internet through an unsecured channel. If they do, they provide attackers with a clear path to circumvent your firewalls and gain access to the rest of your network with ease. 5. Social Engineering and Phishing Social engineering attacks refer to a broad range of deceptive practices used by hackers to gain access to victims’ assets. What makes this approach special is that it does not necessarily depend on technical expertise. Instead of trying to hack your systems, cybercriminals are trying to hack your employees and company policies to carry out their attacks. Email phishing is one of the most common examples. In a typical phishing attack , hackers may spoof an email server to make it look like they are sending emails from a high-level executive in the company you work for. They can then impersonate this executive and demand junior accountants pay fictitious invoices or send sensitive customer data to email accounts controlled by threat actors. Other forms of social engineering can use your organization’s tech support line against itself. Attackers may pretend to represent large customer accounts and will leverage this ruse to gain information about how your company works. They may impersonate a third-party vendor and request confidential information that the vendor would normally have access to. These attacks span the range from simple trickery to elaborate confidence scams. Protecting against them can be incredibly challenging, and your firewall capabilities can make a significant difference in your overall state of readiness. How to protect yourself against social engineering attacks Employee training is the top priority for protecting against social engineering attacks . When employees understand the company’s operating procedures and security policies, it’s much harder for social engineers to trick them. Ideally, training should also include in-depth examples of how phishing attacks work, what they look like, and what steps employees should take when contacted by people they don’t trust. 6. Sandbox Exploits Many organizations use sandbox solutions to prevent file-based malware attacks. Sandboxes work by taking suspicious files and email attachments and opening them in a secure virtual environment before releasing them to users. The sandbox solution will observe how the file behaves and quarantine any file that shows malicious activity. In theory, this provides a powerful layer of defense against file-based attacks. But in practice, cybercriminals are well aware of how to bypass these solutions. For example, many sandbox solutions can’t open files over a certain size. Hackers who attach malicious code to large files can easily get through. Additionally, many forms of malware do not start executing malicious tasks the second they are activated. This delay can provide just enough of a buffer to get through a sandbox system. Some sophisticated forms of malware can even detect when they are being run in a sandbox environment – and will play the part of an innocent program until they are let loose inside the network. How to protect yourself against sandbox exploits Many next-generation firewalls include cloud-enabled sandboxing capable of running programs of arbitrary size for a potentially unlimited amount of time. More sophisticated sandbox solutions go to great lengths to mimic the system specifications of an actual endpoint so malware won’t know it is being run in a virtual environment. Organizations may also be able to overcome the limitations of the sandbox approach using Content Disarm and Reconstruction (CDR) techniques. This approach keeps potentially malicious files off the network entirely and only allows a reconstructed version of the file to enter the network. Since the new file is constructed from scratch, it will not contain any malware that may have been attached to the original file. Prevent firewall breaches with AlgoSec Managing firewalls manually can be overwhelming and time-consuming – especially when dealing with multiple firewall solutions. With the help of a firewall management solution , you easily configure firewall rules and manage configurations from a single dashboard. AlgoSec’s powerful firewall management solution integrates with your firewalls to deliver unified firewall policy management from a single location, thus streamlining the entire process. With AlgoSec, you can maintain clear visibility of your firewall ruleset, automate the management process, assess risk & optimize rulesets, streamline audit preparation & ensure compliance, and use APIs to access many features through web services. Schedule a demo Related Articles 2025 in review: What innovations and milestones defined AlgoSec’s transformative year in 2025? AlgoSec Reviews Mar 19, 2023 · 2 min read Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • AlgoSec | Zero Trust Design

    In today’s evolving threat landscape, Zero Trust Architecture has emerged as a significant security framework for organizations. One... Zero Trust Zero Trust Design Nitin Rajput 2 min read Nitin Rajput Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 5/18/24 Published In today’s evolving threat landscape, Zero Trust Architecture has emerged as a significant security framework for organizations. One influential model in this space is the Zero Trust Model, attributed to John Kinderbag. Inspired by Kinderbag’s model, we explore how our advanced solution can effectively align with the principles of Zero Trust. Let’s dive into the key points of mapping the Zero Trust Model with AlgoSec’s solution, enabling organizations to strengthen their security posture and embrace the Zero Trust paradigm. My approach of mapping Zero Trust Model with AlgoSec solution is based on John Kinderbag’s Zero Trust model ( details ) which being widely followed, and I hope it will help organizations in building their Zero trust strategy. Firstly, let’s understand what Zero trust is all about in a simple language. Zero Trust is a Cybersecurity approach that articulates that the fundamental problem we have is a broken trust model where the untrusted side of the network is the evil internet, and the trusted side is the stuff we control. Therefore, it is an approach to designing and implementing a security program based on the notion that no user or device or agent should have implicit trust. Instead, anyone or anything, a device or system that seeks access to corporate assets must prove it should be trusted. The primary goal of Zero Trust is to prevent breaches. Prevention is possible. In fact, it’s more cost effective from a business perspective to prevent a breach than it is to attempt to recover from a breach, pay a ransom, and the deal with the costs of downtime or lost customers. As per John Kinderbag, there are Four Zero Trust Design Principles and Five-Step Zero Trust Design Methodology. The Four Zero Trust Design Principles: The first and the most important principle of your Zero Trust strategy is know “What is the Business trying to achieve?”. Second, start with DAAS (Data, Application, Asset and Services) elements and protect surfaces that need protection and design outward from there. Third, determine who needs to have access to a resource in order to get their job done, commonly known as least privilege. Fourth, all the traffic going to and from a protect surface must be inspected and logged for malicious content. Define Business Outcomes Design from the inside out Determine who or what needs access Inspect and log all traffic The Five-Step Zero Trust Design Methodology To make your Zero trust journey achievable, you need a repeatable process to follow. The first step in the Zero trust is to break down your environment into smaller pieces that you need to protect (protect surfaces). The second step for deploying Zero Trust in each protect surfaces is to map the transactions flows so that we can allow only the ports and the address needed and nothing else. Everyone wants to know what products to buy to do Zero trust or to eliminate trust between digital systems, the truth is that you won’t know the answer to that until you’ve gone through the process. Which brings us to the third step in the methodology: architecting the Zero trust environment. Ultimately, we need to instantiate Zero Trust as a Layer 7 policy statement. Use the Kipling Method of Zero Trust policy writing to determine who or what can access your protect surface. The fifth design principle of Zero Trust is to inspect and log all traffic, for monitor and maintain, one needs to take all of the telemetry – whether it’s from a network detection and response tool, or from firewall or server application logs and then learn from them. As you learn over time, you can make security stronger and stronger. Define the protect surface Map the transaction flows Architect a Zero trust environment Create Zero trust policies Monitor and maintain. How AlgoSec aligns with “Map the transaction Flows” the 2nd step of Design Methodology? AlgoSec Auto-Discovery. analyses your traffic flows, turning them into a clear map. AutoDiscovery receives network traffic metadata as NetFlow, SFLOW, or full packets and then digest multiple streams of traffic metadata to let you clearly visualize your transaction flows. Once the transaction flows are discovered and optimized, the system keeps tracking changes in these flows. Once new flows are discovered in the network, the application description is updated with the new flows. Outcome: Clear visualization of transaction flows. Updated application description. Optimized transaction flows. How AlgoSec aligns with “Architect Zero Trust Policies” – the 4th step of Design Methodology? With AlgoSec, you can automate the security policy change process without introducing any element of risk, vulnerability, or compliance violation. AlgoSec allows you to ingest the discovered transaction flows as a Traffic Change request and analyze those traffic changes before they are implemented all the to your Firewalls, Public Cloud and SDN Solutions and validate successful changes as intended, all within your existing IT Service Management (ITSM) solutions. Outcome: Analyzed traffic changes for implementation. Implemented security policy changes without risk, vulnerability, or compliance violations. How Algosec aligns with “Monitor and maintain” – the 5th step of Design Methodology? AlgoSec analyzes security by analyzing firewall policies, firewall rules, firewall traffic logs and firewall change configurations. Detailed analysis of the security logs offers critical network vital intelligence about security breaches and attempted attacks like virus, trojans, and denial of service among others. With AlgoSec traffic flow analysis, you can monitor traffic within a specific firewall rule. You do not need to allow all traffic to traverse in all directions but instead, you can monitor it through the pragmatic behaviors on the network and enable network firewall administrators to recognize which firewall rules they can create and implement to allow only the necessary access. Outcome: Critical network intelligence, identification of security breaches and attempted attacks. Enhanced firewall rule creation and implementation, allowing only necessary access. Schedule a demo Related Articles 2025 in review: What innovations and milestones defined AlgoSec’s transformative year in 2025? AlgoSec Reviews Mar 19, 2023 · 2 min read Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • Life Insurance | AlgoSec

    Explore Algosec's customer success stories to see how organizations worldwide improve security, compliance, and efficiency with our solutions. Leading Life Insurance Company Ensures Security and Compliance Organization Life Insurance Industry Financial Services Headquarters Texas, USA Download case study Share Customer
success stories "AlgoSec worked right out of the box. We got started quickly and never looked back.” A leading insurance provider of life, disability and other benefits for individuals increases efficiency and ensures continuous compliance on their networks. Background This life insurance company provides insurance and wealth-management products and services to millions of Americans. The company employs thousands of people and maintains a network of several thousand financial representatives. They offer a wide range of insurance products and services that include life insurance, disability income insurance, annuities, investments, dental and vision. Challenges For decades, the company operated a large and growing data center in Bethlehem, PA which they recently transferred to Dallas, TX. During and since the transfer, the company has been replacing much of its multi-vendor network infrastructure, consolidating on Cisco Firepower technology, but still maintaining vestiges of other routers, firewalls and network equipment. At the new data center, the company’s IT staff maintains more than 100 firewalls that host some 10,000 rules. The company’s network security engineer described the considerable pressure on the security staff: “Change requests are frequent, 25-30 per week, demanding considerable time and effort by the security team.” Due to the presence of firewalls from multiple vendors, change requests were analyzed manually and pushed to devices with great care so as not to interrupt the operation of a rapidly growing body of applications. “The change–request process was tedious and very time consuming,” declared the engineer. “as was the pressure to maintain a strong compliance posture at all times.” The company is subject to a litany of demanding insurance-industry regulations that concern the care of personal information and processes. Managing risk is critical to the success of the business and being able to ascertain compliance with regulations is always vital. Solution The security team turned to AlgoSec to help them manage network security policy across the large data center that includes firewalls from multiple vendors. After a careful review, the security team acquired AlgoSec’s Firewall Analyzer to speed up the process of firewall change management as well as to continuously quantify the degree of compliance and level of risk. Vendor-agnostic AlgoSec Firewall Analyzer delivers visibility and analysis of complex network security policies across on–premise and cloud networks. It automates and simplifies security operations including troubleshooting, auditing and risk analysis. Firewall Analyzer optimizes the configuration of firewalls, routers, web proxies and related network infrastructure to ensure security and compliance. Results After a very short installation and learning period, the security staff became proficient at operating Firewall Analyzer’s helpful capabilities. Soon thereafter, staff members undertook AlgoSec certification courses to become experts in using the solution for firewall analysis. “AlgoSec worked right out of the box,” said the engineer. “We got started quickly and never looked back.” The AlgoSec solution has significantly improved processes, delivering significantly improved results for their security team: Reduced time to analyze and optimize firewall rules, automatically checking for shadow rules and discovering other rules eligible for consolidation or deletion. Continual optimization of firewall rules across their entire network estate. Increased efficiency of security staff, enabling them to keep up with the volume of change requests. Accelerated and more accurate change verification. Audit-readiness, generating scheduled and on-demand compliance reports. The security staff looks forward to implementing AlgoSec FireFlow (AFF), that will enable them to push changes automatically to their population of firewalls, eliminating errors and further reducing risk. With AFF, the staff will be able to respond to changing business requirements with increased speed and agility. They added: “We are also checking out AlgoSec’s new cloud-security solution since we are migrating a growing number of applications to AWS.” Schedule time with one of our experts

  • Cloud network security: Challenges and best practices | AlgoSec

    Discover key insights on cloud network security, its benefits, challenges, and best practices for protecting your cloud environment effectively. Cloud network security: Challenges and best practices What is cloud network security? Cloud network security refers to the measures used to protect public, private, and hybrid cloud networks. These measures include technology, services, processes, policies, and controls and can defend against data exposure or misuse. Why is cloud network security important? Cloud network security is important because of the wide range of threats to data and other cloud resources. Some of the most common include data breaches and exposure, malware, phishing, compromised APIs, distributed denial-of-service (DDoS), and DNS attacks, among others. In addition to defending against threat actors, cloud networks must also comply with an ever-growing number of regulations. A cloud-native security tool can provide the protection, incident response, and compliance that organizations need. Cloud security vs. network security Network security is a type of cloud security. If used in a hybrid system, it can rely on physical barriers and protections, whereas cloud security must exclusively use virtual solutions. In cloud computing, several organizations may share resources through infrastructure-as-a-service platforms like AWS EC2. Distributed data centers mean physical cybersecurity measures, like firewalls, must be replaced with virtual projections. There are three categories of cloud security: public, private, and hybrid cloud environments. Each offers its own set of challenges, which only increase in complexity for organizations with a multi-cloud environment. Schedule a Demo How does cloud network security work? Cloud network security routes traffic using software-defined networking. These protections are different from on-premise firewall systems and are virtualized and live in the cloud. The most secure platforms are built on a zero-trust security model, requiring authentication and verification for every connection. This helps protect cloud resources and defend them throughout the threat lifecycle. Schedule a Demo The benefits of cloud network security Cloud networks are inherently complex, and managing them using native tools can leave your organization vulnerable. Using a cloud network security solution offers several advantages. Improved protection The most important benefit of a secure cloud infrastructure is better protection. Managed permissions and orchestration can help prevent breaches and ensure better security across the system. Automated compliance A security solution can also help ensure compliance through automation that reviews policies for the most up-to-date regulatory and industry requirements and deploys the policy to multiple cloud platforms from a single place. Better visibility With a comprehensive solution, you can see all your properties—including on-premise and hybrid systems—in a single pane of glass. Improved visibility means recognizing new threats faster and resolving issues before they arise. Schedule a Demo Cloud network security challenges The cloud offers several benefits over traditional networks but also leads to unique vulnerabilities. Complexity across security control layers Cloud providers’ built-in security controls, such as security groups and network ACLs, impacts security posture. There is a need to protect cloud assets such as virtual machines, DBaaS, and serverless functions. Misconfigurations can introduce security risks across various assets, including IaaS and PaaS. Cloud and traditional firewall providers also offer advanced network security products (such as Azure Firewall, Palo Alto VM-Series, Check Point CloudGuard). Multiple public clouds Today’s environment uses multiple public clouds from AWS, Azure, and GCP. Security professionals are challenged by the need to understand their differences while managing them separately using multiple consoles and diverse tools. Multiple stakeholders Unlike on-premise networks, managing deployment is especially challenging in the cloud, where changes to configurations and security rules are often made by application developers, DevOps, and cloud teams. Schedule a Demo Key layers for cloud security Robust public cloud network security architecture must include four separate areas—layers that build upon each other for an effective network security solution. Cloud security architecture is fundamentally different from its on-premise counterpart. Cloud security challenges are met by a layered approach rather than a physical perimeter. Security for AWS, Azure, or any other public cloud employs four layers of increasing protection. Layer 1: Security groups Security groups form the first and most fundamental layer of cloud network security. Unlike traditional firewalls that use both allow and deny rules, security groups deny traffic by default and only use allow rules. These security groups are similar to the firewalls of the 90s in that they’re directly connected to servers (instances, in cloud architecture terms). If this first layer is penetrated, control of the associated security group is exposed. Layer 2: Network Access Control Lists (NACLs) Network Access Control Lists (NACLs) are used to provide AWS and Azure cloud security. Each NACL is connected to a Virtual Private Network (VPN) or Virtual Private Cloud (VPC) in AWS or VNet in Azure and controls all instances of that VPC or VNet. Centralized NACLs hold both allow and deny rules and make cloud security posture much stronger than Layer 1, making Layer 2 essential for cloud security compliance. Layer 3: Cloud vendor security solution Cloud security is a shared responsibility between the customer and the vendor, and today’s vendors include their own solutions, which must be integrated into the platform as a whole. For example, Microsoft’s Azure Firewall as a Service (FWaaS), a next-generation secure internet gateway, acts like a wall between the cloud itself and the internet. Layer 4: Third-party cloud security services Traditional firewall vendors, like solutions from Check Point (CloudGuard) and Palo Alto Networks (VM-Series), need to be integrated as well. These third parties create firewalls that stand between the public clouds and the outside world. They develop segmentation for the cloud’s inner perimeter like an on-premise network. This fourth layer is key for infrastructure built to defend against the most difficult hybrid cloud security challenges . Schedule a Demo Why AlgoSec AlgoSec Cloud offering provides application-based risk identification and security policy management across the multi-cloud estate. As organizations adopt cloud strategies and migrate applications to take advantage of cloud economies of scale, they face increased complexity and risk. Security controls and network architectures from leading cloud vendors are distinct and do not provide unified central cloud management. Cloud network security under one unified umbrella AlgoSec Cloud offering enables effective security management of the various security control layers across the multi-cloud estate. AlgoSec offers instant visibility, risk assessment, and central policy management , enabling a unified and secure security control posture, proactively detecting misconfigurations. Continuous visibility AlgoSec provides holistic visibility for all of your cloud accounts assets and security controls. Risk management Proactively detect misconfigurations to protect cloud assets, including cloud instances, databases, and serverless functions. Identify risky rules as well as their last usage date and confidently remove them. Tighten overall network security by mapping network risks to applications affected by these risks. Central management of security policies Manage network security controls, such as security groups and Azure Firewalls, in one system across multiple clouds, accounts, regions, and VPC/ VNETs. Manage similar security controls in a single security policy so you can save time and prevent misconfigurations. Policy cleanup As cloud security groups are constantly adjusted, they can rapidly bloat. This makes it difficult to maintain, increasing potential risk. With CloudFlow’s advanced rule cleanup capabilities, you can easily identify unused rules and remove them with confidence. Schedule a Demo Select a size What is cloud network security? How does cloud network security work? The benefits of cloud network security Cloud network security challenges Key layers for cloud security Why AlgoSec Get the latest insights from the experts 6 best practices to stay secure in the hybrid cloud Read more The enterprise guide to hybrid network management Read more Multi-Cloud Security Network Policy and Configuration Management Read more Choose a better way to manage your network

bottom of page