

Search results
699 results found with an empty search
- AlgoSec | How to Create a Zero Trust Network
Organizations no longer keep their data in one centralized location. Users and assets responsible for processing data may be located... Zero Trust How to Create a Zero Trust Network Tsippi Dach 2 min read Tsippi Dach Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 2/12/24 Published Organizations no longer keep their data in one centralized location. Users and assets responsible for processing data may be located outside the network, and may share information with third-party vendors who are themselves removed from those external networks. The Zero Trust approach addresses this situation by treating every user, asset, and application as a potential attack vector whether it is authenticated or not. This means that everyone trying to access network resources will have to verify their identity, whether they are coming from inside the network or outside. What are the Zero Trust Principles and Concepts? The Zero Trust approach is made up of six core concepts that work together to mitigate network security risks and reduce the organization’s attack surface. 1. The principle of least privilege Under the Zero Trust model, network administrators do not provide users and assets with more network access than strictly necessary. Access to data is also revoked when it is no longer needed. This requires security teams to carefully manage user permissions , and to be able to manage permissions based on users’ identities or roles. The principle of least privilege secures the enterprise network ecosystem by limiting the amount of damage that can result from a single security failure. If an attacker compromises a user’s account, it won’t automatically gain access to a wide range of systems, tools, and workloads beyond what that account is provisioned for. This can also dramatically simplify the process of responding to security events, because no user or asset has access to assets beyond the scope of their work. 2. Continuous data monitoring and validation Zero trust policy assumes that there are attackers both inside and outside the network. To guarantee the confidentiality, integrity, and availability of network assets, it must continuously evaluate users and assets on the network. User identity and privileges must be checked periodically along with device identity and security. Organizations accomplish this in a variety of ways. Connection and login time-outs are one way to ensure periodic monitoring and validation since it requires users to re-authenticate even if they haven’t done anything suspicious. This helps protect against the risk of threat actors using credential-based attacks to impersonate authenticated users, as well as a variety of other attacks. 3. Device access control Organizations undergoing the Zero Trust journey must carefully manage and control the way users interact with endpoint devices. Zero Trust relies on verifying and authenticating user identities separately from the devices they use. For example, Zero Trust security tools must be able to distinguish between two different individuals using the same endpoint device. This approach requires fundamental changes to the way certain security tools work. For example, firewalls that allow or deny access to network assets based purely on IP address and port information aren’t sufficient. Most end users have more than one device at their disposal, and it’s common for mobile devices to change IP addresses. As a result, the cybersecurity tech stack needs to be able to grant and revoke permissions based on the user’s actual identity or role. 4. Network micro segmentation Network segmentation is a good security practice even outside the Zero Trust framework, but it takes on special significance when threats can come from inside and outside the network. Microsegmentation takes this one step further by breaking regular network segments down into small zones with their own sets of permissions and authorizations. These microsegments can be as small as a single asset, and an enterprise data center may have dozens of separately secured zones like these. Any user or asset with permission to access one zone will not necessarily have access to any of the others. Microsegmentation improves security resilience by making it harder for attackers to move between zones. 5. Detecting lateral movement Lateral movement is when threat actors move from one zone to another in the network. One of the benefits of micro segmentation is that threat actors must interact with security tools in order to move between different zones on the network. Even if the attackers are successful, their activities generate logs and audit trails that analysts can follow when investigating security incidents. Zero Trust architecture is designed to contain attackers and make it harder for them to move laterally through networks. When an attack is detected, the compromised asset can be quarantined from the rest of the network. Assets can be as small as individual devices or user accounts, or as large as entire network segments. The more granular your security architecture is, the more choices you have for detecting and preventing lateral movement on the network. 6. Multi-factor authentication (MFA) Passwords are a major problem for traditional security models, because most security tools automatically extend trust to anyone who knows the password. Once a malicious actor learns a privileged user’s login credentials, they can bypass most security checks by impersonating that user. Multi-factor authentication solves that problem by requiring users to provide more information. Knowing a password isn’t enough – users must authenticate by proving their identity in another way. These additional authentication factors can come in the form of biometrics, challenge/response protocols, or hardware-based verifications. How To Implement a Zero Trust Network 1. Map Out Your Attack Surface There is no one-size-fits-all solution for designing and implementing Zero Trust architecture. You must carefully define your organization’s attack surface and implement solutions that protect your most valuable assets. This will require a variety of tools, including firewalls, user access controls, permissions, and encryption. You will need to segment your network into individual zones and use microsegmentation to secure high-value and high-volume zones separately. Pay close attention to how your organization secures its most important assets and connections: Sensitive data . This might include customer and employee data, proprietary information, and intellectual property that you can’t allow threat actors to gain access to. It should benefit from the highest degree of security. Critical applications. These applications play a central role in your organization’s business processes, and must be protected against the risk of disruption. Many of them process sensitive data and must benefit from the same degree of security. Physical assets. This includes everything from customer-facing kiosks to hardware servers located in a data center. Access control is vital for preventing malicious actors from interacting with physical assets. Third-party services. Your organization relies on a network of partners and service providers, many of whom need privileged access to your data. Your Zero Trust policy must include safeguards against attacks that compromise third-party partners in your supply chain. 2. Implement Zero Trust Controls using Network Security Tools The next step in your Zero Trust journey is the implementation of security tools that allow you collect, analyze, and respond to user behaviors on your network. This may require the adjustment of your existing security tech stack, and the addition of new tools designed for Zero Trust use cases. Firewalls must be able to capture connection data beyond the traditional IP, port, and protocol data that most simple solutions rely on. The Zero Trust approach requires inspecting the identities of users and assets that connect with network assets, which requires more advanced firewall technology. This is possible with next generation firewall (NGFW) technology. VPNs may need to be reconfigured or replaced because they do not typically enforce the principle of least privilege. Usually, VPNs grant users access to the entire connected network – not just one small portion of it. In most cases, organizations pursuing Zero Trust stop using VPNs altogether because they no longer provide meaningful security benefits. Zero Trust Network Access (ZTNA) provides secure access to network resources while concealing network infrastructure and services. It is similar to a software-defined perimeter that dynamically responds to network changes and grants flexibility to security policies. ZTNA works by establishing one-to-one encrypted connections between network assets, making imprecise VPNs largely redundant. 3. Configure for Identity and Access Management Identity-based monitoring is one of the cornerstones of the Zero Trust approach. In order to accurately grant and revoke permissions to users and assets on the network, you must have some visibility into the identities behind the devices being used. Zero Trust networks verify user identities in a variety of ways. Some next-generation firewalls can distinguish between user traffic, device traffic, application traffic, and content. This allows the firewall to assign application sessions to individual users and devices, and inspect the data being transmitted between individuals on networks. In practice, this might mean configuring a firewall to compare outgoing content traffic with an encrypted list of login credentials. If a user accidentally logs onto a spoofed phishing website and enters their login credentials, the firewall can catch the data before it is transferred off the network. This would not be possible without the ability to distinguish between different types of traffic using next-generation firewall technology. Multi-factor authentication is also vital to identity and access management. A Zero Trust network should not automatically authenticate a user who presents the correct username and password combination to access a secure account. This does not prove the identity of the individual who owns the account – it only proves that the individual knows the username and password. Additional verification factors make it more likely that this person is, in fact, the owner of the account. 4. Create a Zero Trust Policy for Your IT Environment The process of implementing Zero Trust policies in cloud-native environments can be complex. Every third-party vendor and service provider has a role to play in establishing and maintaining Zero Trust. This often puts significant technical demands on third-party partners, which may require organizations to change their existing agreements. If a third-party partner cannot support Zero Trust, they can’t be allowed onto the network. The same is true for on-premises and data center environments, but with added emphasis on physical security and access control. Security leaders need to know who has physical access to servers and similar assets so they can conduct investigations into security incidents properly. Data centers need to implement strict controls on who interacts with protected equipment and how their access is supervised. How to Operationalize Zero Trust Your Zero Trust implementation will not automatically translate to an operational security context that you can immediately use. You will need to adopt security operations that reflect the Zero Trust strategy and launch adaptive security measures that address vulnerabilities in real-time. Gain visibility into your network. Your network perimeter is no longer strictly defined by its hardware. It consists of cloud resources, automated workflows, operating systems, and more. You won’t be able to enforce Zero Trust without gaining visibility into every aspect of your network environment. Monitor network infrastructure and traffic. Your security team will need to monitor and respond to access requests coming from inside and outside your network. This can lead to significant bottlenecks if your team is not equipped with solutions for automatically managing network traffic and access. Streamline detection and response. Zero Trust networks mitigate the risks of cyberattacks, malware, ransomware, and other potential threats, but it’s still up to individual security analysts to detect and investigate security incidents. The volume of data analysts must inspect may increase significantly, so you should be prepared to mitigate the issue of alert fatigue. Automate Endpoint Security. Consider implementing an automated Endpoint Detection and Response (EDR) solution that can identify malicious behaviors on network devices and address them in real-time. Implement Zero Trust With AlgoSec AlgoSec is a global cybersecurity leader that provides secure application connectivity and policy management through a unified platform. It aligns with Zero Trust principles to provide comprehensive traffic flow analysis and optimization while automated policy changes and eliminating the risk of compliance violations. Security leaders rely on AlgoSec to implement and operationalize Zero Trust deployments while proactively managing complex security policies . AlgoSec can help you establish a Zero Trust network quickly and efficiently, providing visibility and change management capabilities to your entire security tech stack and enabling security personnel to address misconfiguration risks in real-time. Book a demo now to find out how AlgoSec can help you adopt Zero Trust security and prevent attackers from infiltrating your organization. Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call
- AlgoSec | Compliance Made Easy: How to improve your risk posture with automated audits
Tal Dayan, security expert for AlgoSec, discusses the secret to passing audits seamlessly and how to introduce automated compliance... Auditing and Compliance Compliance Made Easy: How to improve your risk posture with automated audits Tal Dayan 2 min read Tal Dayan Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 4/29/21 Published Tal Dayan, security expert for AlgoSec, discusses the secret to passing audits seamlessly and how to introduce automated compliance Compliance standards come in many different shapes and sizes. Some organizations set their own internal policies, while others are subject to regimented global frameworks such as PCI DSS , which protects customers’ card payment details; SOX to safeguard financial information or HIPAA , which protects patients’ healthcare data. Regardless of which industry you operate in, regular auditing is key to ensuring your business retains its risk posture whilst also remaining compliant. The problem is that running manual risk and security audits can be a long, drawn-out, and tedious affair. A 2020 report from Coalfire and Omdia found that for the majority of organizations, growing compliance obligations are now consuming 40% or more of IT security budgets and threaten to become an unsustainable cost. The report suggests two reasons for this growing compliance burden. First, compliance standards are changing from point-in-time reviews to continuous, outcome-based requirements. Second, the ongoing cyber-skills shortage is stretching organizations’ abilities to keep up with compliance requirements. This means businesses tend to leave them until the last moment, leading to a rushed audit that isn’t as thorough as it could be, putting your business at increased risk of a penalty fine or, worse, a data breach that could jeopardize the entire organization. The auditing process itself consists of a set of requirements that must be created for organizations to measure themselves against. Each rule must be manually analyzed and simulated before it can be implemented and used in the real world. As if that wasn’t time-consuming enough, every single edit to a rule must also be logged meticulously. That is why automation plays a key role in the auditing process. By striking the right balance between automated and manual processes, your business can achieve continuous compliance and produce audit reports seamlessly. Here is a six-step strategy that can set your business on the path to sustainable and successful ongoing auditing preservation: Step 1: Gather information This step will be the most arduous but once completed it will become much easier to sustain. This is when you’ll need to gather things like security policies, firewall access logs, documents from previous audits and firewall vendor information – effectively everything you’d normally factor into a manual security audit. Step 2: Define a clear change management process A good change management process is essential to ensure traceability and accountability when it comes to firewall changes. This process should confirm that every change is properly authorized and logged as and when it occurs, providing a picture of historical changes and approvals. Step 3: Audit physical & OS security With the pandemic causing a surge in the number of remote workers and devices used, businesses must take extra care to certify that every endpoint is secured and up-to-date with relevant security patches. Crucially, firewall and management services should also be physically protected, with only designated personnel permitted to access them. Step 4: Clean up & organize rule base As with every process, the tidier it is, the more efficient it is. Document rules and naming conventions should be enforced to ensure the rule base is as organized as possible, with identical rules consolidated to keep things concise. Step 5: Assess & remediate risk Now it’s time to assess each rule and identify those that are particularly risky and prioritize them by severity. Are there any that violate corporate security policies? Do some have “ANY” and a permissive action? Make a list of these rules and analyze them to prepare plans for remediation and compliance. Step 6: Continuity & optimization Now it’s time to simply hone the first five steps and make these processes as regular and streamlined as possible. By following the above steps and building out your own process, you can make day-to-day compliance and auditing much more manageable. Not only will you improve your compliance score, you’ll also be able to maintain a sustainable level of compliance without the usual disruption and hard labor caused by cumbersome and expensive manual processes. To find out more about auditing automation and how you can master compliance, watch my recent webinar and visit our firewall auditing and compliance page. Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call
- AlgoSec | Sunburst Backdoor: A Deeper Look Into The SolarWinds’ Supply Chain Malware
Update : Next two parts of the analysis are available here and here . As earlier reported by FireEye, the actors behind a global... Cloud Security Sunburst Backdoor: A Deeper Look Into The SolarWinds’ Supply Chain Malware Rony Moshkovich 2 min read Rony Moshkovich Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 12/15/20 Published Update : Next two parts of the analysis are available here and here . As earlier reported by FireEye, the actors behind a global intrusion campaign have managed to trojanise SolarWinds Orion business software updates in order to distribute malware. The original FireEye write-up already provides a detailed description of this malware. Nevertheless, as the malicious update SolarWinds-Core-v2019.4.5220-Hotfix5.msp was still available for download for hours since the FireEye’s post, it makes sense to have another look into the details of its operation. The purpose of this write-up is to provide new information, not covered in the original write-up. Any overlaps with the original description provided by FireEye are not intentional. For start, the malicious component SolarWinds.Orion.Core.BusinessLayer.dll inside the MSP package is a non-obfuscated .NET assembly. It can easily be reconstructed with a .NET disassembler, such as ILSpy , and then fully reproduced in C# code, using Microsoft Visual Studio. Once reproduced, it can be debugged to better understand how it works. In a nutshell, the malicious DLL is a backdoor. It is loaded into the address space of the legitimate SolarWinds Orion process SolarWinds.BusinessLayerHost.exe or SolarWinds.BusinessLayerHostx64.exe . The critical strings inside the backdoor’s class SolarWinds.Orion.Core.BusinessLayer.OrionImprovementBusinessLayer are encoded with the DeflateStream Class of the .NET’s System.IO.Compression library, coupled with the standard base64 encoder. Initialisation Once loaded, the malware checks if its assembly file was created earlier than 12, 13, or 14 days ago. The exact number of hours it checks is a random number from 288 to 336. Next, it reads the application settings value ReportWatcherRetry . This value keeps the reporting status, and may be set to one of the states: New (4) Truncate (3) Append (5) When the malware runs the first time, its reporting status variable ReportWatcherRetry is set to New (4) . The reporting status is an internal state that drives the logic. For example, if the reporting status is set to Truncate , the malware will stop operating by first disabling its networking communications, and then disabling other security tools and antivirus products. In order to stay silent, the malware periodically falls asleep for a random period of time that varies between 30 minutes and 2 hours. At the start, the malware obtains the computer’s domain name . If the domain name is empty, the malware quits. It then generates a 8-byte User ID, which is derived from the system footprint. In particular, it is generated from MD5 hash of a string that consists from the 3 fields: the first or default operational (can transmit data packets) network interface’s physical address computer’s domain name UUID created by Windows during installation (machine’s unique ID) Even though it looks random, the User ID stays permanent as long as networking configuration and the Windows installation stay the same. Domain Generation Algorithm The malware relies on its own CryptoHelper class to generate a domain name. This class is instantiated from the 8-byte User ID and the computer’s domain name, encoded with a substitution table: “rq3gsalt6u1iyfzop572d49bnx8cvmkewhj” . For example, if the original domain name is “ domain “, its encoded form will look like: “ n2huov “. To generate a new domain, the malware first attempts to resolve domain name “ api.solarwinds.com “. If it fails to resolve it, it quits. The first part of the newly generated domain name is a random string, produced from the 8-byte User ID, a random seed value, and encoded with a custom base64 alphabet “ph2eifo3n5utg1j8d94qrvbmk0sal76c” . Because it is generated from a random seed value, the first part of the newly generated domain name is random. For example, it may look like “ fivu4vjamve5vfrt ” or “ k1sdhtslulgqoagy “. To produce the domain name, this string is then appended with the earlier encoded domain name (such as “ n2huov “) and a random string, selected from the following list: .appsync-api.eu-west-1[.]avsvmcloud[.]com .appsync-api.us-west-2[.]avsvmcloud[.]com .appsync-api.us-east-1[.]avsvmcloud[.]com .appsync-api.us-east-2[.]avsvmcloud[.]com For example, the final domain name may look like: fivu4vjamve5vfrtn2huov[.]appsync-api.us-west-2[.]avsvmcloud[.]com or k1sdhtslulgqoagyn2huov[.]appsync-api.us-east-1[.]avsvmcloud[.]com Next, the domain name is resolved to an IP address, or to a list of IP addresses. For example, it may resolve to 20.140.0.1 . The resolved domain name will be returned into IPAddress structure that will contain an AddressFamily field – a special field that specifies the addressing scheme. If the host name returned in the IPAddress structure is different to the queried domain name, the returned host name will be used as a C2 host name for the backdoor. Otherwise, the malware will check if the resolved IP address matches one of the patterns below, in order to return an ‘address family’: IP Address Subnet Mask ‘Address Family’ 10.0.0.0 255.0.0.0 Atm 172.16.0.0 255.240.0.0 Atm 192.168.0.0 255.255.0.0 Atm 224.0.0.0 240.0.0.0 Atm fc00:: fe00:: Atm fec0:: ffc0:: Atm ff00:: ff00:: Atm 41.84.159.0 255.255.255.0 Ipx 74.114.24.0 255.255.248.0 Ipx 154.118.140.0 255.255.255.0 Ipx 217.163.7.0 255.255.255.0 Ipx 20.140.0.0 255.254.0.0 ImpLink 96.31.172.0 255.255.255.0 ImpLink 131.228.12.0 255.255.252.0 ImpLink 144.86.226.0 255.255.255.0 ImpLink 8.18.144.0 255.255.254.0 NetBios 18.130.0.0 255.255.0.0 NetBios 71.152.53.0 255.255.255.0 NetBios 99.79.0.0 255.255.0.0 NetBios 87.238.80.0 255.255.248.0 NetBios 199.201.117.0 255.255.255.0 NetBios 184.72.0.0 255.254.0.0 NetBios For example, if the queried domain resolves to 20.140.0.1 , it will match the entry in the table 20.140.0.0 , for which the returned ‘address family’ will be ImpLink . The returned ‘address family’ invokes an additional logic in the malware. Disabling Security Tools and Antivirus Products If the returned ‘address family’ is ImpLink or Atm , the malware will enumerate all processes and for each process, it will check if its name matches one of the pre-defined hashes. Next, it repeats this processed for services and for the drivers installed in the system. If a process name or a full path of an installed driver matches one of the pre-defined hashes, the malware will disable it. For hashing, the malware relies on Fowler–Noll–Vo algorithm. For example, the core process of Windows Defender is MsMpEng.exe . The hash value of “ MsMpEng ” string is 5183687599225757871 . This value is specifically enlisted the malware’s source under a variable name timeStamps : timeStamps = new ulong[1] { 5183687599225757871uL } The service name of Windows Defender is windefend – the hash of this string ( 917638920165491138 ) is also present in the malware body. As a result, the malicioius DLL will attempt to stop the Windows Defender service. In order to disable various security tools and antivirus products, the malware first grants itself SeRestorePrivilege and SeTakeOwnershipPrivilege privileges, using the native AdjustTokenPrivileges() API. With these privileges enabled, the malware takes ownership of the service registry keys it intends to manipulate. The new owner of the keys is first attempted to be explicitly set to Administrator account. If such account is not present, the malware enumerates all user accounts, looking for a SID that represents the administrator account. The malware uses Windows Management Instrumentation query “ Select * From Win32_UserAccount ” to obtain the list of all users. For each enumerated user, it makes sure the account is local and then, when it obtains its SID, it makes sure the SID begins with S-1-5- and ends with -500 in order to locate the local administrator account. Once such account is found, it is used as a new owner for the registry keys, responsible for manipulation of the services of various security tools and antivirus products. With the new ownership set, the malware then disables these services by setting their Start value to 4 (Disabled): registryKey2.SetValue(“Start”), 4, RegistryValueKind.DWord); HTTP Backdoor If the returned ‘address family’ for the resolved domain name is NetBios , as specified in the lookup table above, the malware will initialise its HttpHelper class, which implements an HTTP backdoor. The backdoor commands are covered in the FireEye write-up, so let’s check only a couple of commands to see what output they produce. One of the backdoor commands is CollectSystemDescription . As its name suggests, it collects system information. By running the code reconstructed from the malware, here is an actual example of the data collected by the backdoor and delivered to the attacker’s C2 with a separate backdoor command UploadSystemDescription : 1. %DOMAIN_NAME% 2. S-1-5-21-298510922-2159258926-905146427 3. DESKTOP-VL39FPO 4. UserName 5. [E] Microsoft Windows NT 6.2.9200.0 6.2.9200.0 64 6. C:\WINDOWS\system32 7. 0 8. %PROXY_SERVER% Description: Killer Wireless-n/a/ac 1535 Wireless Network Adapter #2 MACAddress: 9C:B6:D0:F6:FF:5D DHCPEnabled: True DHCPServer: 192.168.20.1 DNSHostName: DESKTOP-VL39FPO DNSDomainSuffixSearchOrder: Home DNSServerSearchOrder: 8.8.8.8, 192.168.20.1 IPAddress: 192.168.20.30, fe80::8412:d7a8:57b9:5886 IPSubnet: 255.255.255.0, 64 DefaultIPGateway: 192.168.20.1, fe80::1af1:45ff:feec:a8eb NOTE: Field #7 specifies the number of days (0) since the last system reboot. GetProcessByDescription command will build a list of processes running on a system. This command accepts an optional argument, which is one of the custom process properties enlisted here . If the optional argument is not specified, the backdoor builds a process list that looks like: [ 1720] svchost [ 8184] chrome [ 4732] svchost If the optional argument is specified, the backdoor builds a process list that includes the specified process property in addition to parent process ID, username and domain for the process owner. For example, if the optional argument is specified as “ ExecutablePath “, the GetProcessByDescription command may return a list similar to: [ 3656] sihost.exe C:\WINDOWS\system32\sihost.exe 1720 DESKTOP-VL39FPO\UserName [ 3824] svchost.exe C:\WINDOWS\system32\svchost.exe 992 DESKTOP-VL39FPO\UserName [ 9428] chrome.exe C:\Program Files (x86)\Google\Chrome\Application\chrome.exe 4600 DESKTOP-VL39FPO\UserName Other backdoor commands enable deployment of the 2nd stage malware. For example, the WriteFile command will save the file: using (FileStream fileStream = new FileStream(path, FileMode.Append, FileAccess.Write)) { fileStream.Write(array, 0, array.Length); } The downloaded 2nd stage malware can then the executed with RunTask command: using (Process process = new Process()) { process.StartInfo = new ProcessStartInfo(fileName, arguments) { CreateNoWindow = false, UseShellExecute = false }; if (process.Start()) … Alternatively, it can be configured to be executed with the system restart, using registry manipulation commands, such as SetRegistryValue . Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call
- AlgoSec | What is a Cloud-Native Application Protection Platform (CNAPP)
Cloud environments are complex and dynamic. Due to the complexity and multifacetedness of cloud technologies, cloud-native applications... Cloud Security What is a Cloud-Native Application Protection Platform (CNAPP) Ava Chawla 2 min read Ava Chawla Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 11/24/22 Published Cloud environments are complex and dynamic. Due to the complexity and multifacetedness of cloud technologies, cloud-native applications are challenging to safeguard. As a result, security teams use multiple security solutions, like CWPP and CSPM, to protect applications. The problem with this approach is that handling multiple security tools is laborious, time-consuming, and inefficient. Cloud-native application protection platform (CNAPP) is a new cloud security solution that promises to solve this problem. What is CNAPP? A cloud-native application protection platform (CNAPP) is an all-in-one tool with the capabilities of different cloud-native security tools. It combines the security features of multiple tools and provides comprehensive protection – from the development and configuration stages to deployment and runtime. Container security is here to stay A CNAPP combines CSPM, CIEM, IAM, CWPP, and more in one tool. It streamlines cloud security monitoring, threat detection, and remediation processes. The all-in-one platform gives organizations better visibility into threats and vulnerabilities. Instead of using multiple tools to receive alerts and formulate a remediation plan, a CNAPP minimizes complexity and enables security teams to monitor and draw insights from a single platform. How Does CNAPP Work and Why is it So Important to Have? This new cloud security approach offers the capabilities of multiple security tools in one software. Some of these security functions include Cloud Security Posture Management (CSPM), Infrastructure-as-Code (IaC) Scanning, Cloud Workload Protection Platform (CWPP), Cloud Network Security Connectivity (CNSC), and Kubernetes Security Posture Management (CIEM). The all-in-one platform centralizes insights, enabling security professionals to monitor and analyze data from the same space. A CNAPP identifies risks with strong context, provides detailed alerts, and offers automation features to fix vulnerabilities and misconfigurations. A CNAPP is essential because it reduces complexity and minimizes overhead. Given how complex and dynamic the cloud environments are, organizations are faced with enormous security threats. Enterprises deploy applications on multiple private and public clouds leveraging various dynamic, mixed technologies. This makes securing cloud assets significantly challenging. To cope with the complexity, security operations teams rely on multiple cloud security solutions. SecOps use various solutions to protect modern development practices, such as containers, Kubernetes, serverless functions, CI/CD pipelines, and infrastructure as code (IaC). This approach has been helpful. That said, it’s laborious and inefficient. In addition to not providing a broad view of security risks, dealing with multiple tools negatively impacts accuracy and decreases productivity. Having to correlate data from several platforms leads to errors and delayed responses. A CNAPP takes care of these problems by combining the functionalities of multiple tools in one software. It protects every stage of the cloud application lifecycle, from development to runtime. Leveraging advanced analytics and remediation automation, CNAPPs help organizations address cloud-native risks, harden applications, and institute security best practices. What Problems Does a CNAPP Solve? This new category of cloud application security tool is revolutionizing the cybersecurity landscape. It solves major challenges DevSecOps have been dealing with. That said, a CNAPP helps security teams to solve the following problems. 1. Enhancing Visibility and Quantifying Risks A CNAPP offers a broader visibility of security risks. It leverages multiple security capabilities to enable DevOps and DevSecOps to spot and fix potential security issues throughout the entire application lifecycle. The all-in-one security platform enables teams to keep tabs on all cloud infrastructures ( like apps, APIs, and classified data) and cloud services (like AWS, Azure, and Google Cloud). In addition, it provides insights that help security teams to quantify risks and formulate data-driven remediation strategies. 2. Combined Cloud Security Solution A CNAPP eliminates the need to use multiple cloud-native application protection solutions. It provides all the features needed to detect and solve security issues. Scanning, detection, notification, and reporting are consolidated in one software. This reduces human error, shortens response time, and minimizes the cost of operation. 3. Secure Software Development It reinforces security at every stage of the application lifecycle. The tool helps DevOps teams to shift left, thus minimizing the incidence of vulnerabilities or security issues at runtime. 4. Team Collaboration Collaboration is difficult and error-prone when teams are using multiple tools. Data correlation and analysis take more time since team members have more than one tool to deal with. A CNAPP is a game-changer! It has advanced workflows, data correlation, analytics, and remediation features. These functionalities enhance team collaboration and increase productivity. What are CNAPP Features and Capabilities/Key Components of CNAPP? Even though the features and capabilities of CNAPPs differ (based on vendors), there are key components an effective CNAPP should have. That being said, here are the seven key components: Cloud Security Posture Management (CSPM) A CSPM solution focuses on maintaining proper cloud configuration. It monitors, detects, and fixes misconfigurations & compliance violations. CSPM monitors cloud resources and alerts security teams when a non-compliant resource is identified. Infrastructure-as-Code (IaC) Scanning IaC Scanning enables the early detection of errors (misconfigurations) in code. Spotting misconfigurations before deployment helps to avoid vulnerabilities at runtime. This tool is used to carry out some kind of code review. The purpose is to ensure code quality by scanning for vulnerable points, compliance issues, and violations of policies. Cloud Workload Protection Platform (CWPP) Cloud workload protection platform (CSPM) secures cloud workloads, shielding your resources from security threats. CSPM protects various workloads, from virtual machines (VMs) and databases to Kubernetes and containers. A CWPP monitors and provides insights to help security teams prevent security breaches. Cloud Network Security Connectivity (CNSC) Cloud Network Security Connectivity (CNSC) provides complete real-time visibility and access to risks across all your cloud resources and accounts. This cloud security solution allows you to explore the risks, activate security rules, and suppress whole risks or risk triggers, export risk trigger details, access all network rules in the context of their policy sets and create risk reports. Kubernetes Security Posture Management (KSPM) Kubernetes security posture management (KSPM) capability enables organizations to maintain standard security posture by preventing Kubernetes misconfigurations and compliance violations. KSPM solution, similar to Cloud Security Posture Management (CSPM), automates Kubernetes security, reinforces compliance, identifies misconfigurations, and monitors Kubernetes clusters to ensure maximum security. Cloud Infrastructure Entitlement Management (CIEM) A Cloud Infrastructure Entitlement Management (CIEM) tool is used to administer permissions and access policies. To maintain the integrity of cloud and multi-cloud environments, identities and access privileges must be regulated. This is where CIEM comes in! CIEM solutions, also known as Cloud permissions Management Solutions, help organizations prevent data breaches by enforcing the principle of least privileges. Integration to Software Development Activities This component of CNAPP focuses on integrating cloud-native application protection solutions into the development phase to improve reliability and robustness in the CI/CD pipeline stage. What are the Benefits of CNAPP? Transitioning from using multiple cloud security tools to implementing a CNAPP solution can benefit your company in many ways. Some benefits include: 1. Streamlines Security Operations Managing multiple security tools decreases efficiency and leads to employee burnout. Correlating data from different software is laborious and error-prone. It prolongs response time. A CNAPP streamlines activities by giving security teams broad visibility from a single tool. This makes monitoring and remediation easier than ever – making security teams more efficient and productive. 2. Better Visibility into Risks A CNAPP provides better visibility into security risks associated with your cloud infrastructure. It covers all aspects of cloud-native application protection, providing security teams with the necessary insights to close security gaps, harden applications, and ward off threats. 3. Improves Security With Automation Risk detection and vulnerability management are automated. Automation of security tasks increases reliability, reduces human error, and enables rapid response to threats. It combines automation and advanced analytics to offer organizations accurate insights into risks. 4. Reduces the Number of Bug Fixes A CNAPP prevents vulnerabilities at runtime by detecting threats and errors in the CI/CD pipeline phases. This approach improves DevOps team productivity and decreases the number of bug fixes after deployment. In other words, shifting left ensures the deployment of high-quality code. 5. Reduces Overhead Costs If you want to cut down the cost of operation, consider choosing a CNAPP over CSPM and other standalone cloud security tools. It reduces overhead by eliminating the need to operate and maintain multiple cloud security solutions. AlgoSec CNAPP with Prevasio and CloudFlow Cloud environments are increasingly complex and dynamic. Maintaining secure cloud infrastructures has become more challenging than ever. Security teams rely on multiple tools to gain visibility into risks. CNAPPs promise to fix the challenges of using multiple solutions to protect cloud-native applications. Gartner, the first to describe the CNAPP category, encourages organizations to consider emerging CNAPP providers and adopt an all-in-one security approach that takes care of the entire life cycle of applications – covering development and runtime protection. Prevasio makes transitioning to a CNAPP a fantastic experience. Prevasio takes pride in helping organizations protect their cloud-native applications and other cloud assets. Prevasio’s agentless cloud-native application protection platform (CNAPP) offers increased risk visibility and enables security teams to reinforce best practices. Contact us to learn how we can help you manage your cloud security. Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call
- AlgoSec | Resolving human error in application outages: strategies for success
Application outages caused by human error can be a nightmare for businesses, leading to financial losses, customer dissatisfaction, and... Cyber Attacks & Incident Response Resolving human error in application outages: strategies for success Malynnda Littky-Porath 2 min read Malynnda Littky-Porath Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 3/18/24 Published Application outages caused by human error can be a nightmare for businesses, leading to financial losses, customer dissatisfaction, and reputational damage. While human error is inevitable, organizations can implement effective strategies to minimize its impact and resolve outages promptly. In this blog post, we will explore proven solutions for addressing human error in application outages, empowering businesses to enhance their operational resilience and deliver uninterrupted services to their customers. Organizations must emphasize training and education One of the most crucial steps in resolving human error in application outages is investing in comprehensive training and education for IT staff. By ensuring that employees have the necessary skills, knowledge, and understanding of the application environment, organizations can reduce the likelihood of errors occurring. Training should cover proper configuration management, system monitoring, troubleshooting techniques, and incident response protocols. Additionally, fostering a culture of continuous learning and improvement is essential. Encourage employees to stay up to date with the latest technologies, best practices, and industry trends through workshops, conferences, and online courses. Regular knowledge sharing sessions and cross-team collaborations can also help mitigate human errors by fostering a culture of accountability and knowledge transfer. It’s time to implement robust change management processes Implementing rigorous change management processes is vital for preventing human errors that lead to application outages. Establishing a standardized change management framework ensures that all modifications to the application environment go through a well-defined process, reducing the risk of inadvertent errors. The change management process should include proper documentation of proposed changes, a thorough impact analysis, and rigorous testing in non-production environments before deploying changes to the production environment. Additionally, maintaining a change log and conducting post-implementation reviews can provide valuable insights for identifying and rectifying any potential errors. Why automate and orchestrate operational tasks Human errors often occur due to repetitive, mundane tasks that are prone to oversight or mistakes. Automating and orchestrating operational tasks can significantly reduce human error in application outages. Organizations should leverage automation tools to streamline routine tasks such as provisioning, configuration management, and deployment processes. By removing the manual element, the risk of human error decreases, and the consistency and accuracy of these tasks improve. Furthermore, implementing orchestration tools allows for the coordination and synchronization of complex workflows involving multiple teams and systems. This reduces the likelihood of miscommunication and enhances collaboration, minimizing errors caused by lack of coordination. Establish effective monitoring and alerting mechanisms Proactive monitoring and timely alerts are crucial for identifying potential issues and resolving them before they escalate into outages. Implementing robust monitoring systems that capture key performance indicators, system metrics, and application logs enables IT teams to quickly identify anomalies and take corrective action. Additionally, setting up alerts and notifications for critical events ensures that the appropriate personnel are notified promptly, allowing for rapid response and resolution. Leveraging artificial intelligence and machine learning capabilities can enhance monitoring by detecting patterns and anomalies that human operators might miss. Human errors will always be a factor in application outages, but by implementing effective strategies, organizations can minimize their impact and resolve incidents promptly. Investing in comprehensive training, robust change management processes, automation and orchestration, and proactive monitoring can significantly reduce the likelihood of human error-related outages. By prioritizing these solutions and fostering a culture of continuous improvement, businesses can enhance their operational resilience, protect their reputation, and deliver uninterrupted services to their customers. Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call
- AlgoSec | Cloud security study reveals: over 50% of system failures are caused by human error and mismanagement
The past few years have witnessed a rapid surge in the use of SaaS applications across various industries. But with this growth comes a... Hybrid Cloud Security Management Cloud security study reveals: over 50% of system failures are caused by human error and mismanagement Malynnda Littky-Porath 2 min read Malynnda Littky-Porath Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 6/20/23 Published The past few years have witnessed a rapid surge in the use of SaaS applications across various industries. But with this growth comes a significant challenge: managing security and assessing risk in application connectivity. In this blog, I’ll explore the fascinating insights from a recent study conducted by the Cloud Security Alliance (CSA). The study delves into the complexities of managing security and assessing the risk of application connectivity in the rapidly growing world of SaaS applications and cloud environments. With responses from 1,551 IT and security professionals from organizations of all sizes and from all corners of the globe, this study provides valuable insights into the challenges of application security in cloud environments and how to best manage them. Insight # 1 – Human error is the leading cause of application outages With more than half of these outages linked to manual processes and the increasing complexity of the systems themselves, businesses are losing productivity, revenue, and even reputation due to downtime. In many cases, the root cause of these outages is traced back to configuration errors, software bugs, or human mistakes during deployments or maintenance activities. To combat these issues, investment in automation and machine learning technologies can mitigate the risk of human error and ensure the reliability and stability of their applications. Insight # 2 – 75% of organizations experienced application outages lasting an hour or more. The financial impact of outages has been significant, with an estimated cost of $300,000 or more per instance. These costs include lost productivity, revenue, and potential customer churn. While human error is the major contributor to downtime, outages are often caused by a combination of additional factors, including hardware or software failure and cyber-attacks. Comprehensive disaster recovery plans, backup systems, and application performance monitoring tools are necessary to minimize outages and ensure business continuity. Insight # 3 – A lack of visibility and compliance are the primary constraints to rolling out new applications . Visibility is essential to understanding how applications are used, where they are deployed, and how they integrate with other systems. Compliance gaps, on the other hand, can pose significant risks, resulting in issues such as data breaches, regulatory fines, or reputational damage. To ensure successful application rollout, organizations must have a clear view of their application environment and ensure compliance with relevant standards and regulations. Insight # 4 – The shift to the DevOps methodology has led to a shift-left movement where security is integrated into the application development process . Traditionally, application security teams have been responsible for securing applications in the public cloud. However, DevOps teams are becoming more involved in the security of applications in the public cloud. DevOps teams are now responsible for ensuring that applications are designed with security in mind, and they work with the application security teams to ensure that the necessary controls are in place. Involving the DevOps teams in the security process can reduce the risk of security breaches and ensure that security is integrated throughout the application lifecycle. Insight # 5 – Organizations are targeting unauthorized access to applications in the public cloud . Organizations can protect their applications by implementing strong authentication mechanisms, access controls, and encryption to protect sensitive data. Using the principle of least privilege can limit application access to only authorized personnel. cloud infrastructure is secure and that vulnerabilities are regularly identified and addressed. Organizations must review their security requirements, monitor the application environment, and regularly update their security controls to protect their data and applications in the public cloud. Insight # 6 – A rapidly evolving technology landscape has created skills gaps and staffing issues Specialized skills are not always readily available within organizations, which can result in a shortage of qualified personnel. This can overburden teams, resulting in burnout and increased staff turnover. Staffing shortages can also lead to knowledge silos, where critical skills and knowledge are concentrated in a few key individuals, leaving the rest of the team vulnerable to knowledge gaps. Organizations must invest in training and development programs to ensure that their teams have the skills and knowledge necessary to succeed in their roles. Successful cloud migrations require a comprehensive knowledge of cloud security controls and how they interconnect and collaborate with on-premise security systems. To make this happen, organizations need complete visibility across both cloud and on-premise environments, and must automate the network security management processes. To sum up, the rapidly evolving threat environment demands new ways to enhance security. Proactive risk detection, powerful automation capabilities, and enhanced visibility in the cloud and outside of it are just a few ways to strengthen your security posture. AlgoSec can do all that, and more, to help you stay ahead of emerging threats and protect your critical assets.. Even better, our solution is ideal for organizations that may lack in-house expertise and resources, complementing the existing security measures and helping to keep you one step ahead of attackers. Don’t miss out on the full insights and recommendations from the study. Click here to access the complete findings. Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call
- AlgoSec | The AlgoSec perspective: an in-depth interview with Kyle Wickert, worldwide strategic architect
Explore AlgoSec's visionary approach to secure connectivity: predictive solutions, sector-specific innovation, and empowering businesses for Uncategorized The AlgoSec perspective: an in-depth interview with Kyle Wickert, worldwide strategic architect Adel Osta Dadan 2 min read Adel Osta Dadan Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 6/15/24 Published “We’re not just responding to the digital transformation anymore; it’s here, and frankly, most of us aren’t ready for it yet. One key insight from my time at AlgoSec is that at our very core, our mission is to enable seamless interconnectivity. This means staying ahead, embracing change as an opportunity for growth,” shares Kyle Wickert, highlighting the essence of AlgoSec’s forward-thinking approach. His role as Worldwide Strategic Architect has positioned him at the confluence of technology and strategic innovation, where he emphasizes the importance of anticipating change rather than merely reacting to it. As our conversation unfolded, Wickert elaborated on why solutions should not just be reactive but predictive, setting AlgoSec apart by prioritizing applications on a macro level. “It’s about understanding the broader implications of connectivity and security, ensuring our solutions are not just timely but timeless,” he added, reflecting on the dynamic nature of digital security. Strategically navigating the digital space : “In this digital epoch, every business is inherently a technology business,” asserts Wickert. This conviction drives AlgoSec’s strategy, focusing on securing application connectivity as a means to empower businesses. By transforming potential vulnerabilities into opportunities, AlgoSec ensures businesses can leverage their technological infrastructure for sustained success. “It’s about turning challenges into catalysts for growth,” Wickert emphasizes, showcasing AlgoSec’s role in fostering innovation. Empowering sector-specific excellence : The unique demands of sectors like healthcare and finance bring to light the critical need for tailored security solutions. Wickert points out, “As these industries continue to evolve, the demand for secure, seamless connectivity becomes increasingly paramount.” AlgoSec’s commitment to developing solutions that address these specific challenges underscores its dedication to not just ensuring survival but promoting excellence across diverse sectors. Orchestrating security with business strategy : Wickert believes in the symbiosis of strategy and security, where technological solutions are in tune with business objectives. “Securing application connectivity means creating a seamless blend of technology with business goals,” he states. This philosophy is embodied in AlgoSec’s comprehensive suite of solutions, which are designed to align digital security measures with the rhythm of business expansion and strategic development. Championing a human-centric digital future : At the heart of AlgoSec’s ethos is a deep-seated belief in the power of technology to serve human progress. “We’re not just building solutions; we’re enabling futures where technology amplifies human potential and creativity,” Wickert passionately notes. This vision guides AlgoSec’s approach, ensuring that their security solutions empower rather than constrain, fostering an environment ripe for innovation and advancement. Leading the charge in cybersecurity innovation : Looking forward, AlgoSec is committed to being at the vanguard of cybersecurity innovation. “Our vision looks beyond the immediate horizon, anticipating the evolving needs of tomorrow’s businesses,” Wickert shares. With a focus on strategic foresight and a commitment to innovative solutions, AlgoSec is poised to guide enterprises through the intricacies of digital transformation towards a future that is not only secure but also thriving. Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call
- AlgoSec | Navigating the Cybersecurity Horizon in 2024
The persistence of sophisticated ransomware In 2023, organizations faced a surge in ransomware attacks, prompting a reevaluation of... Network Segmentation Navigating the Cybersecurity Horizon in 2024 Prof. Avishai Wool 2 min read Prof. Avishai Wool Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 12/17/23 Published The persistence of sophisticated ransomware In 2023, organizations faced a surge in ransomware attacks, prompting a reevaluation of cybersecurity readiness. The focus on high-value assets and critical infrastructure indicated an escalating threat landscape, demanding stronger preemptive measures. This trend is expected to continue in 2024 as cybercriminals exploit vulnerabilities. Beyond relying on technology alone, organizations must adopt strategies like Zero Trust and Micro-segmentation for comprehensive preparedness, fortifying data security. A resolute and practical response is crucial to safeguard critical assets in the evolving cybersecurity landscape. DevSecOps Integration DevSecOps is set to become a cornerstone in software development, integrating security practices proactively. As Infrastructure as a Service (IaaS) popularity rises, customizing security settings becomes challenging, necessitating a shift from network perimeter reliance. Anticipating an “Always-on Security” approach like Infrastructure as Code (IaC), companies can implement policy-based guardrails in the CI/CD pipeline. If risks violating the guardrails are identified, automation should halt for human review. Cloud-Native Application Protection Platforms (CNAPP): The CNAPP market has advanced from basic Cloud Security Posture Management (CSPM) to include varied vulnerability and malware scans, along with crucial behavioral analytics for cloud assets like containers. However, few vendors emphasize deep analysis of Infrastructure as a Service (IaaS) networking controls in risk and compliance reporting. A more complete CNAPP platform should also provide comprehensive analytics of cloud applications’ connectivity exposure. Application-centric approach to network security will supersede basic NSPM Prepare for the shift from NSPM to an application-centric security approach, driven by advanced technologies, to accelerate in 2024. Organizations, grappling with downsizing and staff shortages, will strategically adopt this holistic approach to improve efficiency in the security operations team. Emphasizing knowledge retention and automated change processes will become crucial to maintain security with agility. AI-based enhancements to security processes Generative AI, as heralded by Chat-GPT and its ilk, has made great strides in 2023, and has demonstrated that the technology has a lot of potential. I think that in 2024 we will see many more use cases in which this potential goes from simply being “cool” to a more mature technology that is brought to market to bring real value to owners of security processes. Any use case that involves analyzing, summarizing, or generalizing text, can potentially benefit from a generative AI assist. The trick will be to do so in ways that save human time, without introducing factual hallucinations. Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call
- AlgoSec | Your Complete Guide to Cloud Security Architecture
In today’s digital world, is your data 100% secure? As more people and businesses use cloud services to handle their data,... Cloud Security Your Complete Guide to Cloud Security Architecture Rony Moshkovich 2 min read Rony Moshkovich Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 7/4/23 Published In today’s digital world, is your data 100% secure? As more people and businesses use cloud services to handle their data, vulnerabilities multiply. Around six out of ten companies have moved to the cloud, according to Statista . So keeping data safe is now a crucial concern for most large companies – in 2022, the average data leak cost companies $4.35 million . This is where cloud security architecture comes in. Done well, it protects cloud-based data from hackers, leaks, and other online threats. To give you a thorough understanding of cloud security architecture, we’ll look at; What cloud security architecture is The top risks for your cloud How to build your cloud security How to choose a CPSM (Cloud Security Posture Management) tool Let’s jump in What is cloud security architecture? Let’s start with a definition: “Cloud security architecture is the umbrella term used to describe all hardware, software and infrastructure that protects the cloud environment and its components, such as data, workloads, containers, virtual machines and APIs.” ( source ) Cloud security architecture is a framework to protect data stored or used in the cloud. It includes ways to keep data safe, such as controlling access, encrypting sensitive information, and ensuring the network is secure. The framework has to be comprehensive because the cloud can be vulnerable to different types of attacks. Three key principles behind cloud security Although cloud security sounds complex, it can be broken down into three key ideas. These are known as the ‘CIA triad’, and they are; Confidentiality Integrity Availability ‘The CIA Triad’ Image source Confidentiality Confidentiality is concerned with data protection. If only the correct people can access important information, breaches will be reduced. There are many ways to do this, like encryption, access control, and user authentication. Integrity Integrity means making sure data stays accurate throughout its lifecycle. Organizations can use checksums and digital signatures to ensure that data doesn’t get changed or deleted. These protect against data corruption and make sure that information stays reliable. Availability Availability is about ensuring data and resources are available when people need them. To do this, you need a robust infrastructure and ways to switch to backup systems when required. Availability also means designing systems that can handle ‘dos attacks’ and will interrupt service. However, these three principles are just the start of a strong cloud infrastructure. The next step is for the cloud provider and customer to understand their security responsibilities. A model developed to do this is called the ‘Shared Responsibility Model.’ Understanding the Shared Responsibility Model Big companies like Amazon Web Services (AWS), Microsoft Azure, and Google Cloud Platform offer public cloud services. These companies have a culture of being security-minded , but security isn’t their responsibility alone. Companies that use these services also share responsibility for handling data. The division of responsibility depends on the service model a customer chooses. This division led Amazon AWS to create a ‘shared responsibility model’ that outlines these. Image Source There are three main kinds of cloud service models and associated duties: 1. Infrastructure as a Service (IaaS), 2. Platform as a Service (PaaS) 3. Software as a Service (SaaS). Each type gives different levels of control and flexibility. 1. Infrastructure as a Service (IaaS) With IaaS, the provider gives users virtual servers, storage, and networking resources. Users control operating systems, but the provider manages the basic infrastructure. Customers must have good security measures, like access controls and data encryption. They also need to handle software updates and security patches. 2. Platform as a Service (PaaS) PaaS lets users create and run apps without worrying about having hardware on-premises. The provider handles infrastructure like servers, storage, and networking. Customers still need to control access and keep data safe. 3. Software as a Service (SaaS) SaaS lets users access apps without having to manage any software themselves. The provider handles everything, like updates, security, and basic infrastructure. Users can access the software through their browser and start using it immediately. But customers still need to manage their data and ensure secure access. Top six cybersecurity risks As more companies move their data and apps to the cloud, there are more chances for security to occur. Although cybersecurity risks change over time , some common cloud security risks are: 1. Human error 99% of all cloud security incidents from now until 2025 are expected to result from human error. Errors can be minor, like using weak passwords or accidentally sharing sensitive information. They can also be bigger, like setting up security incorrectly. To lower the risk of human error, organizations can take several actions. For example, educating employees, using automation, and having good change management procedures. 2. Denial-of-service attacks DoS attacks stop a service from working by sending too many requests. This can make essential apps, data, and resources unavailable in the cloud. DDoS attacks are more advanced than DoS attacks, and can be very destructive. To protect against these attacks, organizations should use cloud-based DDoS protection. They can also install firewalls and intrusion prevention systems to secure cloud resources. 3. Hardware strength The strength of the physical hardware used for cloud services is critical. Companies should look carefully at their cloud service providers (CSPs) hardware offering. Users can also use special devices called hardware security modules (HSMs). These are used to protect encryption codes and ensure data security. 4. Insider attacks Insider attacks could be led by current or former employees, or key service providers. These are incredibly expensive, costing companies $15.38 million on average in 2021 . To stop these attacks, organizations should have strict access control policies. These could include checking access regularly and watching for strange user behavior. They should also only give users access to what they need for their job. 5. Shadow IT Shadow IT is when people use unauthorized apps, devices, or services. Easy-to-use cloud services are an obvious cause of shadow IT. This can lead to data breaches , compliance issues, and security problems. Organizations should have clear rules about using cloud services. All policies should be run through a centralized IT control to handle this. 6. Cloud edge When we process data closer to us, rather than in a data center, we refer to the data as being in the cloud edge. The issue? The cloud edge can be attacked more easily. There are simply more places to attack, and sensitive data might be stored in less secure spots. Companies should ensure security policies cover edge devices and networks. They should encrypt all data, and use the latest application security patches. Six steps to secure your cloud Now we know the biggest security risks, we can look at how to secure our cloud architecture against them. An important aspect of cloud security practices is managing access your cloud resources. Deciding who can access and what they can do can make a crucial difference to security. Identity and Access Management (IAM) security models can help with this. Companies can do this by controlling user access based on roles and responsibilities. Security requirements of IAM include: 1. Authentication Authentication is simply checking user identity when they access your data. At a superficial level, this means asking for a username and password. More advanced methods include multi-factor authentication for apps or user segmentation. Multi-factor authentication requires users to provide two or more types of proof. 2. Authorization Authorization means allowing access to resources based on user roles and permissions. This ensures that users can only use the data and services they need for their job. Limiting access reduces the risk of unauthorized users. Role-based access control (RBAC) is one way to do this in a cloud environment. This is where users are granted access based on their job roles. 3. Auditing Auditing involves monitoring and recording user activities in a cloud environment. This helps find possible security problems and keeps an access log. Organizations can identify unusual patterns or suspicious behavior by regularly reviewing access logs. 4. Encryption at rest and in transit Data at rest is data when it’s not being used, and data in transit is data being sent between devices or users. Encryption is a way to protect data from unauthorized access. This is done by converting it into a code that can only be read by someone with the right key to unlock it. When data is stored in the cloud, it’s important to encrypt it to protect it from prying eyes. Many cloud service providers have built-in encryption features for data at rest. For data in transit, encryption methods like SSL/TLS help prevent interception. This ensures that sensitive information remains secure as it moves across networks. 5. Network security and firewalls Good network security controls are essential for keeping a cloud environment safe. One of the key network security measures is using firewalls to control traffic. Firewalls are gatekeepers, blocking certain types of connections based on rules. Intrusion detection and prevention systems (IDPS) are another important network security tool. IDPS tools watch network traffic for signs of bad activity, like hacking or malware. They then can automatically block or alert administrators about potential threats. This helps organizations respond quickly to security incidents and minimize damage. 6. Versioning and logging Versioning is tracking different versions of cloud resources, like apps and data. This allows companies to roll back to a previous version in case of a security incident or data breach. By maintaining a version history, organizations can identify and address security vulnerabilities. How a CSPM can help protect your cloud security A Cloud Security Posture Management (CSPM) tool helpful to safeguard cloud security. These security tools monitor your cloud environment to find and fix potential problems. Selecting the right one is essential for maintaining the security of your cloud. A CSPM tool like Prevasio management service can help you and your cloud environment. It can provide alerts, notifying you of any concerns with security policies. This allows you to address problems quickly and efficiently. Here are some of the features that Prevasio offers: Agentless CSPM solution Secure multi-cloud environments within 3 minutes Coverage across multi-cloud, multi-accounts, cloud-native services, and cloud applications Prioritized risk list based on CIS benchmarks Uncover hidden backdoors in container environments Identify misconfigurations and security threats Dynamic behavior analysis for container security issues Static analysis for container vulnerabilities and malware All these allow you to fix information security issues quickly to avoid data loss. Investing in a reliable CSPM tool is a wise decision for any company that relies on cloud technology. Final Words As the cloud computing security landscape evolves, so must cloud security architects. All companies need to be proactive in addressing their data vulnerabilities. Advanced security tools such as Prevasio make protecting cloud environments easier. Having firm security policies avoids unnecessary financial and reputational risk. This combination of strict rules and effective tools is the best way to stay secure. Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call
- AlgoSec | Taking Control of Network Security Policy
In this guest blog, Jeff Yager from IT Central Station describes how AlgoSec is perceived by real users and shares how the solution meets... Security Policy Management Taking Control of Network Security Policy Jeff Yeger 2 min read Jeff Yeger Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 8/30/21 Published In this guest blog, Jeff Yager from IT Central Station describes how AlgoSec is perceived by real users and shares how the solution meets their expectations for visibility and monitoring. Business-driven visibility A network and security engineer at a comms service provider agreed, saying, “ The complete and end-to-end visibility and analysis [AlgoSec] provides of the policy rule base is invaluable and saves countless time and effort .” On a related front, according to Srdjan, a senior technical and integration designer at a major retailer, AlgoSec provides a much easier way to process first call resolutions (FCRs) and get visibility into traffic. He said, “With previous vendors, we had to guess what was going on with our traffic and we were not able to act accordingly. Now, we have all sorts of analyses and reports. This makes our decision process, firewall cleanup, and troubleshooting much easier.” Organizations large and small find it imperative to align security with their business processes. AlgoSec provides unified visibility of security across public clouds, software-defined and on-premises networks, including business applications and their connectivity flows. For Mark G., an IT security manager at a sports company, the solution handles rule-based analysis . He said, “AlgoSec provides great unified visibility into all policy packages in one place. We are tracking insecure changes and getting better visibility into network security environment – either on-prem, cloud or mixed.” Notifications are what stood out to Mustafa K., a network security engineer at a financial services firm. He is now easily able to track changes in policies with AlgoSec , noting that “with every change, it automatically sends an email to the IT audit team and increases our visibility of changes in every policy.” Security policy and network analysis AlgoSec’s Firewall Analyzer delivers visibility and analysis of security policies, and enables users to discover, identify, and map business applications across their entire hybrid network by instantly visualizing the entire security topology – in the cloud, on-premises, and everything in between. “It is definitely helpful to see the details of duplicate rules on the firewall,” said Shubham S., a senior technical consultant at a tech services company. He gets a lot of visibility from Firewall Analyzer. As he explained, “ It can define the connectivity and routing . The solution provides us with full visibility into the risk involved in firewall change requests.” A user at a retailer with more than 500 firewalls required automation and reported that “ this was the best product in terms of the flexibility and visibility that we needed to manage [the firewalls] across different regions . We can modify policy according to our maintenance schedule and time zones.” A network & collaboration engineer at a financial services firm likewise added that “ we now have more visibility into our firewall and security environment using a single pane of glass. We have a better audit of what our network and security engineers are doing on each device and are now able to see how much we are compliant with our baseline.” Arieh S., a director of information security operations at a multinational manufacturing company, also used Tufin, but prefers AlgoSec, which “ provides us better visibility for high-risk firewall rules and ease of use.” “If you are looking for a tool that will provide you clear visibility into all the changes in your network and help people prepare well with compliance, then AlgoSec is the tool for you,” stated Miracle C., a security analyst at a security firm. He added, “Don’t think twice; AlgoSec is the tool for any company that wants clear analysis into their network and policy management.” Monitoring and alerts Other IT Central Station members enjoy AlgoSec’s monitoring and alerts features. Sulochana E., a senior systems engineer at an IT firm, said, “ [AlgoSec] provides real-time monitoring , or at least close to real time. I think that is important. I also like its way of organizing. It is pretty clear. I also like their reporting structure – the way we can use AlgoSec to clear a rule base, like covering and hiding rules.” For example, if one of his customers is concerned about different standards , like ISO or PZI levels, they can all do the same compliance from AlgoSec. He added, “We can even track the change monitoring and mitigate their risks with it. You can customize the workflows based on their environment. I find those features interesting in AlgoSec.” AlgoSec helps in terms of firewall monitoring. That was the use case that mattered for Alberto S., a senior networking engineer at a manufacturing company. He said, “ Automatic alerts are sent to the security team so we can react quicker in case something goes wrong or a threat is detected going through the firewall. This is made possible using the simple reports.” Sulochana E. concluded by adding that “AlgoSec has helped to simplify the job of security engineers because you can always monitor your risks and know that your particular configurations are up-to-date, so it reduces the effort of the security engineers.” To learn more about what IT Central Station members think about AlgoSec, visit our reviews page . To schedule your personal AlgoSec demo or speak to an AlgoSec security expert, click here . Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call
- AlgoSec | Convergence didn’t fail, compliance did.
Convergence has been claimed. Security orgs merged their teams, aligned their titles, and drew the new boxes on the whiteboard. The... Convergence didn’t fail, compliance did. Adel Osta Dadan 2 min read Adel Osta Dadan Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 6/17/25 Published Convergence has been claimed. Security orgs merged their teams, aligned their titles, and drew the new boxes on the whiteboard. The result: security teams are now responsible for both cloud and on-premises network environments. But for many of those teams, compliance is still running on fumes. The reporting lines changed. The responsibilities increased. The oversight? Still patchy. The systems? Still fragmented. And the ability to demonstrate consistent policy enforcement across hybrid environments—where compliance lives or dies—has never been more at risk. This isn’t an edge case. It’s structural. And it’s quietly putting every converged team in a bind. The illusion of control If convergence was supposed to simplify compliance, most teams missed the memo. Cloud-native controls don’t sync with on-prem rule sets. Application deployments move faster than the audits tracking them. Policies drift. Risk assessments stall out. And when the next audit comes knocking, security teams are left reconciling evidence after the fact—manually stitching together logs, policies, and screenshots across tools that don’t talk to each other. The result? Ownership without visibility. Policy without context. Responsibility without control. Compliance at the application layer—or nowhere Security and compliance are often treated as parallel tracks. But in hybrid environments, they’re the same problem. The more distributed your network, the more fragmented your enforcement—and the harder it becomes to map controls to real business risk. What matters isn’t whether a port is open. It’s whether the application behind it should be reachable from that region, that VPC, or that user. That requires context. And today, context lives at the application layer. This is where AlgoSec Horizon changes the equation. AlgoSec Horizon is the first platform built to secure application connectivity across hybrid networks—with compliance embedded by design. Horizon: compliance that knows what it’s looking at With Horizon, compliance isn’t an add-on. It’s the outcome of deep visibility and policy awareness at the level that actually matters: the business application. Our customers are using Horizon to: Automatically discover and map every business application—including shadow IT and unapproved flows Simulate rule changes in advance, avoiding deployment errors that compromise compliance Track and enforce policies in context, with real-time validation against compliance frameworks Generate audit-ready reports across hybrid networks without assembling data by hand It’s compliance without the swivel chair. And it’s already helping converged teams move faster—without giving up control. Compliance can’t be an after-thought. Security convergence wasn’t the mistake. Stopping at structure was. When compliance is left behind, the risk isn’t just audit failure—it’s operational drag. Policy friction. Delays in application delivery. Missed SLAs. Because the real impact of compliance gaps isn’t found in the SOC—it’s found in the business outcomes that stall because security couldn’t keep pace. Horizon closes that gap. Because in a world of converged teams and hybrid environments, security has to operate with complete visibility—and compliance has to work at the speed of the application. Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call
- AlgoSec | Cloud Application Security: Threats, Benefits, & Solutions
As your organization adopts a hybrid IT infrastructure, there are more ways for hackers to steal your sensitive data. This is why cloud... Cloud Security Cloud Application Security: Threats, Benefits, & Solutions Rony Moshkovich 2 min read Rony Moshkovich Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 6/29/23 Published As your organization adopts a hybrid IT infrastructure, there are more ways for hackers to steal your sensitive data. This is why cloud application security is a critical part of data protection. It allows you to secure your cloud-based applications from cyber threats while ensuring your data is safe. This post will walk you through cloud application security, including its importance. We will also discuss the main cloud application security threats and how to mitigate them. What is Cloud Application Security Cloud application security refers to the security measures taken to protect cloud-based assets throughout their development lifecycle. These security measures are a framework of policies, tools, and controls that protect your cloud against cyber threats. Here is a list of security measures that cloud application security may involve: Compliance with industry standards such as CIS benchmarks to prevent data breaches. Identity management and access controls to prevent unauthorized access to your cloud-based apps. Data encryption and tokenization to protect sensitive data. Vulnerability management through vulnerability scanning and penetration testing. Network perimeter security, such as firewalls, to prevent unwanted access. The following are some of the assets that cloud security affects: Third-party cloud providers like Amazon AWS, Microsoft Azure, and Google GCP. Collaborative applications like Slack and Microsoft Teams. Data Servers. Computer Networks. Why is Cloud Application Security Important Cloud application security is becoming more relevant as businesses migrated their data to the cloud in recent years. This is especially true for companies with a multi-cloud environment. These types of environments create a larger attack surface for hackers to exploit. According to IBM , the cost of a data breach in 2022 was $4.35 million. And this represents an increase of 2.6% from the previous year. The report also revealed that it took an average of 287 days to find and stop a data breach in a cloud environment. This time is enough for hackers to steal sensitive data and really damage your assets. Here are more things that can go wrong if organizations don’t pay attention to cloud security: Brand image damage: A security breach may cause a brand’s reputation to suffer and a decline in client confidence. During a breach, your company’s servers may be down for days or weeks. This means customers who paid for your services will not get access in that time. They may end up destroying your brand’s image through word of mouth. Lost consumer trust: Consumer confidence is tough to restore after being lost due to a security breach. Customers could migrate to rivals they believe to be more secure. Organizational disruption: A security breach may cause system failures preventing employees from working. This, in turn, could affect their productivity. You may also have to fire employees tasked with ensuring cloud security. Data loss: You may lose sensitive data, such as client information, resulting in legal penalties. Trade secrets theft may also affect the survival of your organization. Your competitors may steal your only leverage in the industry. Compliance violations: You may be fined for failing to comply with industry regulations such as GDPR. You may also face legal consequences for failing to protect consumer data. What are the Major Cloud Application Security Threats The following is a list of the major cloud application security threats: Misconfigurations: Misconfigurations are errors made when setting up cloud-based applications. They can occur due to human errors, lack of expertise, or mismanagement of cloud resources. Examples include weak passwords, unsecured storage baskets, and unsecured ports. Hackers may use these misconfigurations to access critical data in your public cloud. Insecure data sharing: This is the unauthorized or unintended sharing of sensitive data between users. Insecure data sharing can happen due to a misconfiguration or inappropriate access controls. It can lead to data loss, breaches, and non-compliance with regulatory standards. Limited visibility into network operations: This is the inability to monitor and control your cloud infrastructure and its apps. Limited network visibility prevents you from quickly identifying and responding to cyber threats. Many vulnerabilities may go undetected for a long time. Cybercriminals may exploit these weak points in your network security and gain access to sensitive data. Account hijacking: This is a situation where a hacker gains unauthorized access to a legitimate user’s cloud account. The attackers may use various social engineering tactics to steal login credentials. Examples include phishing attacks, password spraying, and brute-force attacks. Once they access the user’s cloud account, they can steal data or damage assets from within. Employee negligence and inadequately trained personnel: This threat occurs when employees are not adequately trained to recognize, report and prevent cyber risks. It can also happen when employees unintentionally or intentionally engage in risky behavior. For example, they could share login credentials with unauthorized users or set weak passwords. Weak passwords enable attackers to gain entry into your public cloud. Rogue employees can also intentionally give away your sensitive data. Compliance risks: Your organization faces cloud computing risks when non-compliant with industry regulations such as GDPR, PCI-DSS, and HIPAA. Some of these cloud computing risks include data breaches and exposure of sensitive information. This, in turn, may result in fines, legal repercussions, and reputational harm. Data loss: Data loss is a severe security risk for cloud applications. It may happen for several causes, including hardware malfunction, natural calamities, or cyber-attacks. Some of the consequences of data loss may be the loss of customer trust and legal penalties. Outdated security software: SaaS vendors always release updates to address new vulnerabilities and threats. Failing to update your security software on a regular basis may leave your system vulnerable to cyber-attacks. Hackers may exploit the flaws in your outdated SaaS apps to gain access to your cloud. Insecure APIs: APIs are a crucial part of cloud services but can pose a severe security risk if improperly secured. Insecure APIs and other endpoint infrastructure may cause many severe system breaches. They can lead to a complete system takeover by hackers and elevated privileged access. How to Mitigate Cloud Application Security Risks The following is a list of measures to mitigate cloud app security risks: Conduct a thorough risk analysis: This entails identifying possible security risks and assessing their potential effects. You then prioritize correcting the risks depending on their level of severity. By conducting risk analysis on a regular basis, you can keep your cloud environment secure. You’ll quickly understand your security posture and select the right security policies. Implement a firm access control policy: Access control policies ensure that only authorized users gain access to your data. They also outline the level of access to sensitive data based on your employees’ roles. A robust access control policy comprises features such as: Multi-factor authentication Role-based access control Least Privilege Access Strong password policies. Use encryption: Encryption is a crucial security measure that protects sensitive data in transit and at rest. This way, if an attacker intercepts data in transit, it will only be useful if they have a decryption key. Some of the cloud encryption solutions you can implement include: Advanced Encryption Standard (AES) Rivest -Shamir-Addleman (RSA) Transport Layer Security (TSL) Set up data backup and disaster recovery policies: A data backup policy ensures data is completely recovered in case of breaches. You can always recover the lost data from your data backup files. Data backup systems also help reduce the impact of cyberattacks as you will restore normal operations quickly. Disaster recovery policies focus on establishing protocols and procedures to restore critical systems during a major disaster. This way, your data security will stay intact even when disaster strikes. Keep a constant watch over cloud environments: Security issues in cloud settings can only be spotted through continuous monitoring. Cloud security posture management tools like Prevasio can help you monitor your cloud for such issues. With its layer analysis feature, you’ll know the exact area in your cloud and how to fix it. Test and audit cloud security controls regularly: Security controls help you detect and mitigate potential security threats in your cloud. Examples of security controls include firewalls, intrusion detection systems, and database encryption. Auditing these security controls helps to identify gaps they may have. And then you take corrective actions to restore their effectiveness. Regularly evaluating your security controls will reduce the risk of security incidents in your cloud. Implement a security awareness training program: Security awareness training helps educate employees on cloud best practices. When employees learn commonly overlooked security protocols, they reduce the risks of data breaches due to human error. Organize regular assessment tests with your employees to determine their weak points. This way, you’ll reduce chances of hackers gaining access to your cloud through tactics such as phishing and ransomware attacks. Use the security tools and services that cloud service providers offer: Cloud service providers like AWS, Azure, and Google Cloud Platform (GCP) offer security tools and services such as: Web application firewalls (WAF), Runtime application self-protection (RASP), Intrusion detection and prevention systems Identity and access management (IAM) controls You can strengthen the security of your cloud environments by utilizing these tools. However, you should not rely solely on these features to ensure a secure cloud. You also need to implement your own cloud security best practices. Implement an incident response strategy: A security incident response strategy describes the measures to take during a cyber attack. It provides the procedures and protocols to bring the system back to normal in case of a breach. Designing incident response plans helps to reduce downtime. It also minimizes the impact of the damages due to cyber attacks. Apply the Paved Road Security Approach in DevSecOps Processes: DevSecOps environments require security to be integrated into development workflows and tools. This way, cloud security becomes integral to an app development process. The paved road security approach provides a secure baseline that DevSecOps can use for continuous monitoring and automated remediation. Automate your cloud application security practices Using on-premise security practices such as manual compliance checks to mitigate cloud application security threats can be tiring. Your security team may also need help to keep up with the updates as your cloud needs grow. Cloud vendors that can automate all the necessary processes to maintain a secure cloud. They have cloud security tools to help you achieve and maintain compliance with industry standards. You can improve your visibility into your cloud infrastructures by utilizing these solutions. They also spot real-time security challenges and offer remediations. For example, Prevasio’s cloud security solutions monitor cloud environments continually from the cloud. They can spot possible security threats and vulnerabilities using AI and machine learning. What Are Cloud Application Security Solutions? Cloud application security solutions are designed to protect apps and other assets in the cloud. Unlike point devices, cloud application security solutions are deployed from the cloud. This ensures you get a comprehensive cybersecurity approach for your IT infrastructure. These solutions are designed to protect the entire system instead of a single point of vulnerability. This makes managing your cybersecurity strategy easier. Here are some examples of cloud security application solutions: 1. Cloud Security Posture Management (CSPM) : CSPM tools enable monitoring and analysis of cloud settings for security risks and vulnerabilities. They locate incorrect setups, resources that aren’t compliant, and other security concerns that might endanger cloud infrastructures. 2. The Cloud Workload Protection Platform (CWPP) : This cloud application security solution provides real-time protection for workloads in cloud environments . It does this by detecting and mitigating real-time threats regardless of where they are deployed. CWPP solutions offer various security features, such as: Network segmentation File integrity monitoring Vulnerability scanning. Using CWPP products will help you optimize your cloud application security strategy. 3. Cloud Access Security Broker (CASB) : CASB products give users visibility into and control over the data and apps they access in the cloud. These solutions help businesses enforce security guidelines and monitor user behavior in cloud settings. The danger of data loss, leakage, and unauthorized access is lowered in the process. CASB products also help with malware detection. 4. Runtime Application Self Protection (RASP): This solution addresses security issues that may arise while a program is working. It identifies potential threats and vulnerabilities during runtime and thwarts them immediately. Some of the RASP solutions include: Input validation Runtime hardening Dynamic Application Security testing 5. Web Application and API protection (WAAP) : These products are designed to protect your organization’s Web applications and APIs. They monitor outgoing and incoming web apps and API traffic to detect malicious activity. WAAP products can block any unauthorized access attempts. They can also protect against cyber threats like SQL injection and Cross-site scripting. 6. Data Loss Prevention (DLP): DLP products are intended to stop the loss or leaking of private information in cloud settings. These technologies keep track of sensitive data in use and at rest. They can also enforce rules to stop unauthorized people from losing or accessing it. 7. Security Information and Event Management (SIEM) systems : SIEM systems track and analyze real-time security incidents and events in cloud settings. The effect of security breaches is decreased thanks to these solutions. They help firms in detecting and responding to security issues rapidly. Cloud Native Application Protection Platform (CNAPP) The CNAPP, which Prevasio created, raises the bar for cloud security. It combines CSPM, CIEM, IAM, CWPP, and more in one tool. A CNAPP delivers a complete security solution with sophisticated threat detection and mitigation capabilities for packaged workloads, microservices, and cloud-native applications. The CNAPP can find and eliminate security issues in your cloud systems before hackers can exploit them. With its layer analysis feature, you can quickly fix any potential vulnerabilities in your cloud . It pinpoints the exact layer of code where there are errors, saving you time and effort. CNAPP also offers a visual dynamic analysis of your cloud environment . This lets you grasp the state of your cloud security at a glance. In the process, saving you time as you know exactly where to go. CNAPP is also a scalable cloud security solution. The cloud-native design of Prevasio’s CNAPP enables it to expand dynamically and offer real-time protection against new threats. Let Prevasio Solve Your Cloud Application Security Needs Cloud security is paramount to protecting sensitive data and upholding a company’s reputation in the modern digital age. To be agile to the constantly changing security issues in cloud settings, Prevasio’s Cloud Native Application Protection Platform (CNAPP) offers an all-inclusive solution. From layer analysis to visual dynamic analysis, CNAPP gives you the tools you need to keep your cloud secure. You can rely on Prevasio to properly manage your cloud application security needs. Try Prevasio today! Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call











