

Search results
610 results found with an empty search
- AlgoSec | 16 Best Practices for Cloud Security (Complete List for 2023)
Ensuring your cloud environment is secure and compliant with industry practices is critical. Cloud security best practices will help you... Cloud Security 16 Best Practices for Cloud Security (Complete List for 2023) Rony Moshkovich 2 min read Rony Moshkovich Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 4/27/23 Published Ensuring your cloud environment is secure and compliant with industry practices is critical. Cloud security best practices will help you protect your organization’s data and applications. In the process, reduce the risks of security compromise. This post will walk you through the best practices for cloud security. We’ll also share the top cloud security risks and how to mitigate them. The top 5 security risks to cloud computing right now Social engineering. Social engineering attackers use psychological deception to manipulate users into providing sensitive information. These deception tactics may include phishing, pretexting, or baiting. Account compromise. An account compromise occurs when an attacker obtains unauthorized entry to it. A hacker can access your account when you use weak passwords or steal your credentials. They may introduce malware or steal your files once they access your account. Shadow IT. This security risk occurs when your employee uses hardware or software that the IT department does not approve. It may result in compliance problems, data loss, and a higher risk of cyberattacks. Insider activity (unintentional or malicious) . Insider activity occurs when approved users damage your company’s data or network. These users can either do it purposefully or accidentally on-premises. For example, you may disclose private information unintentionally or steal data on purpose. Insecure APIs . APIs make communication easier for cloud services and other software applications. Insecure APIs can allow unauthorized access to sensitive data. This could, in turn, lead to malicious attacks, such as data theft. The attackers could also do illegal data alteration from data centers. 16 best practices for cloud security Establish zero-trust architecture Use role-based access control Monitor suspicious activity Monitor privileged users Encrypt data in motion and at rest Investigate shadow IT applications Protect Endpoints Educate employees about threats Create and enforce a password policy Implement multi-factor authentication Understand the shared responsibility model m Audit IaaS configurations Review SLAs and contracts. Maintaining logs and monitoring Use vulnerability and penetration testing Consider intrusion detection and prevention One of the most critical areas of cloud security is identity and access management. We will also discuss sensitive data protection, social engineering attacks, cloud deployments, and incident response. Best practices for managing access. Access control is an integral part of cloud network security. It restricts who can access cloud services, what they can do with the data, and when. Here are some of the best practices for managing access: Establish zero-trust architecture Zero-trust architecture is a security concept that treats all traffic in or out of your network as untrusted. It considers that every request may be malicious. So you must verify your request, even if it originates from within the network. You can apply zero-trust architecture by dividing the system into smaller, more secure cloud zones. And then enforce strict access policies for each zone. This best practice will help you understand who accesses your cloud services. You’ll also know what they do with your data resources. Use role-based access control Role-based access control allows you to assign users different access rights based on their roles. This method lessens the chances of giving people unauthorized access privileges. It also simplifies the administration of access rights. RBAC also simplifies upholding the tenet of least privilege. It restricts user permission to only the resources they need to do their jobs. This way, users don’t have excessive access that attackers could exploit. Monitor suspicious activity Monitoring suspicious behavior involves tracking and analyzing user activity in a cloud environment. It helps identify odd activities, such as user accounts accessing unauthorized data. You should also set up alerts for suspicious activities. Adopting this security strategy will help you spot security incidents early and react quickly. This best practice will help you improve your cloud functionality. It will also protect your sensitive data from unwanted access or malicious activities. Monitor privileged users Privileged users have high-level access rights and permissions. They can create, delete and modify data in the cloud environment. You should consider these users as a huge cybersecurity risk. Your privileged users can cause significant harm if they get compromised. Closely watch these users’ access rights and activity. By doing so, you’ll easily spot misuse of permissions and avert data breaches. You can also use privileged access management systems (PAS) to control access to privileged accounts. Enforcing security certifications also helps privileged users avoid making grievous mistakes. They’ll learn the actions that can pose a cybersecurity threat to their organization. Best practices for protecting sensitive data Safeguarding sensitive data is critical for organizational security. You need security measures to secure the cloud data you store, process and transfer. Encrypt data in motion and at rest Encrypting cloud data in transit and at rest is critical to data security. When you encrypt your data, it transforms into an unreadable format. So only authorized users with a decryption key can make it readable again. This way, cybercriminals will not access your sensitive data. To protect your cloud data in transit, use encryption protocols like TSL and SSL. And for cloud data at rest, use powerful encryption algorithms like AES and RSA. Investigate shadow IT applications Shadow IT apps can present a security risk as they often lack the same level of security as sanctioned apps. Investigating Shadow IT apps helps ensure they do not pose any security risks. For example, some staff may use cloud storage services that are insecure. If you realize that, you can propose sanctioned cloud storage software as a service apps like Dropbox and Google Drive. You can also use software asset management tools to monitor the apps in your environment. A good example is the SaaS solution known as Flexera software asset management. Protect Endpoints Endpoints are essential in maintaining a secure cloud infrastructure. They can cause a huge security issue if you don’t monitor them closely. Computers and smartphones are often the weakest points in your security strategy. So, hackers target them the most because of their high vulnerability. Cybercriminals may then introduce ransomware into your cloud through these endpoints. To protect your endpoints, employ security solutions like antimalware and antivirus software. You could also use endpoint detection and response systems (EDRs) to protect your endpoints from threats. EDRs use firewalls as a barrier between the endpoints and the outside world. These firewalls will monitor and block suspicious traffic from accessing your endpoints in real time. Best practices for preventing social engineering attacks Use these best practices to protect your organization from social engineering attacks: Educate employees about threats Educating workers on the techniques that attackers use helps create a security-minded culture. Your employees will be able to detect malicious attempts and respond appropriately. You can train them on deception techniques such as phishing, baiting, and pretexting. Also, make it your policy that every employee takes security certifications on a regular basis. You can tell them to report anything they suspect to be a security threat to the IT department. They’ll be assured that your security team can handle any security issues they may face. Create and enforce a password policy A password policy helps ensure your employees’ passwords are secure and regularly updated. It also sets up rules everyone must follow when creating and using passwords. Some rules in your password policy can be: Setting a minimum password length when creating passwords. No reusing of passwords. The frequency with which to change passwords. The characteristics of a strong password. A strong password policy safeguards your cloud-based operations from social engineering assaults. Implement multi-factor authentication Multi-factor authentication adds an extra layer of security to protect the users’ accounts. This security tool requires users to provide extra credentials to access their accounts. For example, you may need a one-time code sent via text or an authentication app to log into your account. This extra layer of protection reduces the chances of unauthorized access to accounts. Hackers will find it hard to steal sensitive data even if they have your password. In the process, you’ll prevent data loss from your cloud platform. Leverage the multifactor authentication options that public cloud providers usually offer. For example, Amazon Web Services (AWS) offers multifactor authentication for its users. Best practices for securing your cloud deployments. Your cloud deployments are as secure or insecure as the processes you use to manage them. This is especially true for multi-cloud environments where the risks are even higher. Use these best practices to secure your cloud deployments: Understand the shared responsibility model The shared responsibility model is a concept that drives cloud best practices. It states that cloud providers and customers are responsible for different security aspects. Cloud service providers are responsible for the underlying infrastructure and its security. On the other hand, customers are responsible for their apps, data, and settings in the cloud. Familiarize yourself with the Amazon Web Services (AWS) or Microsoft Azure guides. This ensures you’re aware of the roles of your cloud service provider. Understanding the shared security model will help safeguard your cloud platform. Audit IaaS configurations Cloud deployments of workloads are prone to misconfigurations and vulnerabilities. So it’s important to regularly audit your Infrastructure as a Service (IaaS) configurations. Check that all IaaS configurations align with industry best practices and security standards. Regularly check for weaknesses, misconfigurations, and other security vulnerabilities. This best practice is critical if you are using a multi-cloud environment. The level of complexity arises, which in turn increases the risk of attacks. Auditing IaaS configurations will secure your valuable cloud data and assets from potential cyberattacks. Review SLAs and contracts. Reviewing SLAs and contracts is a crucial best practice for safeguarding cloud installations. It ensures that all parties know their respective security roles. You should review SLAs to ensure cloud deployments meet your needs while complying with industry standards. Examining the contracts also helps you identify potential risks, like data breaches. This way, you prepare elaborate incident responses. Best practices for incident response Cloud environments are dynamic and can quickly become vulnerable to cyberattacks. So your security/DevOps team should design incident response plans to resolve potential security incidents. Here are some of the best practices for incident response: Maintaining logs and monitoring Maintaining logs and monitoring helps you spot potential cybersecurity threats in real time. In the process, enable your security to respond quickly using the right security controls. Maintaining logs involves tracking all the activities that occur in a system. In your cloud environment, it can record login attempts, errors, and other network activity. Monitoring your network activity lets you easily spot a breach’s origin and damage severity. Use vulnerability and penetration testing Vulnerability assessment and penetration testing can help you identify weaknesses in your cloud. These tests mimic attacks on a company’s cloud infrastructure to find vulnerabilities that cybercriminals may exploit. Through automation, these security controls can assist in locating security flaws, incorrect setups, and other weaknesses early. You can then measure the adequacy of your security policies to address these flaws. This will let you know if your cloud security can withstand real-life incidents. Vulnerability and penetration testing is a crucial best practice for handling incidents in cloud security. It may dramatically improve your organization’s overall security posture. Consider intrusion detection and prevention Intrusion detection and prevention systems (IDPS) are essential to a robust security strategy. Intrusion detection involves identifying potential cybersecurity threats in your network. Through automation, intrusion detection tools monitor your network traffic in real-time for suspicious activity. Intrusion prevention systems (IPS) go further by actively blocking malicious activity. These security tools can help prevent any harm by malware attacks in your cloud environment. The bottom line on cloud security. You must enforce best practices to keep your cloud environment secure. This way, you’ll lower the risks of cyberattacks which can have catastrophic results. A CSPM tool like Prevasio can help you enforce your cloud security best practices in many ways. It can provide visibility into your cloud environment and help you identify misconfigurations. Prevasio can also allow you to set up automated security policies to apply across the entire cloud environment. This ensures your cloud users abide by all your best practices for cloud security. So if you’re looking for a CSPM tool to help keep your cloud environment safe, try Prevasio today! Schedule a demo Related Articles 2025 in review: What innovations and milestones defined AlgoSec’s transformative year in 2025? AlgoSec Reviews Mar 19, 2023 · 2 min read Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call
- AlgoSec | Cloud Security Architecture: Methods, Frameworks, & Best Practices
Cloud threats increased by 95 percent in 2022 alone! At a time when many organizations are moving their resources to the cloud and... Cloud Security Cloud Security Architecture: Methods, Frameworks, & Best Practices Rony Moshkovich 2 min read Rony Moshkovich Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 8/8/23 Published Cloud threats increased by 95 percent in 2022 alone! At a time when many organizations are moving their resources to the cloud and security threats are at an all-time high, focusing on your cloud security architecture has never been more critical. While cloud adoption has revolutionized businesses, it has also brought complex challenges. For example, cloud environments can be susceptible to numerous security threats. Besides, there are compliance regulations that you must address. This is why it’s essential to implement the right methods, frameworks, and best practices in cloud environments. Doing so can protect your organization’s sensitive cloud resources, help you meet compliance regulations, and maintain customer trust. Understanding Cloud Security Architecture Cloud security architecture is the umbrella term that covers all the hardware, software, and technologies used to protect your cloud environment. It encompasses the configurations and secure activities that protect your data, workloads, applications, and infrastructure within the cloud. This includes identity and access management (IAM), application and data protection, compliance monitoring, secure DevOps, governance, and physical infrastructure security. A well-defined security architecture also enables manageable decompositions of cloud deployments, including mixed SaaS, PaaS, and IaaS deployments. This helps you highlight specific security needs in each cloud area. Additionally, it facilitates integration between clouds, zones, and interfaces, ensuring comprehensive coverage of all deployment aspects. Cloud security architects generally use a layered approach when designing cloud security. Not only does this improve security, but it also allows companies to align business needs with technical security practices. As such, a different set of cloud stakeholders, including business teams and technical staff, can derive more value. The Fundamentals of Cloud Security Architecture Every cloud computing architecture has three core fundamental capabilities; confidentiality, integrity, and availability. This is known as the CIA triad. Understanding each capability will guide your efforts to build, design, and implement safer cloud environments. 1. Confidentiality This is the ability to keep information hidden and inaccessible to unauthorized entities, such as attackers, malware, and people in your organization, without the appropriate access level. Privacy and trust are also part of confidentiality. When your organization promises customers to handle their data with utmost secrecy, you’re assuring them of confidentiality. 2. Integrity Integrity means that the services, systems, and applications work and behave exactly how you expect. That is, their output is consistent, accurate, and trustworthy. If these systems and applications are compromised and produce unexpected or misleading results, your organization may suffer irreparable damage. 3. Availability As the name implies, availability assures your cloud resources are consistently accessible and operational when needed. So, suppose an authorized user (whether customers or employees) needs data and applications in the cloud, such as your products or services. In that case, they can access it without interruption or significant downtime. Cybercriminals sometimes use denial-of-service (DoS) attacks to prevent the availability of cloud resources. When this happens, your systems become unavailable to you or your customers, which isn’t ideal. So, how do you stop that from happening and ensure your cloud security architecture provides these core capabilities? Approaches to Cloud Security Architecture There are multiple security architecture approaches, including frameworks and methodologies, to support design and implementation steps. Cloud Security Frameworks and Methodologies A cloud security framework outlines a set of guidelines and controls your organizations can use when securing data, applications, and infrastructures within the cloud computing environment. Frameworks provide a structured approach to detecting risks and implementing appropriate security protocols to prevent them. Without a consistent cloud security framework, your organization exposes itself to more vulnerabilities. You may lack the comprehensive visibility to ensure your data and applications are adequately secure from unauthorized access, data exposure, malware, and other security threats. Plus, you may have limited incident response capabilities, inconsistent security practices, and increased operational risks. A cloud security framework also helps you stay compliant with regulatory requirements. Lastly, failing to have appropriate security frameworks can erode customer trust and confidence in your ability to protect their privacy. This is why you must implement a recognized framework to significantly reduce potential risks associated with cloud security and ensure the CIA of data and systems. There are numerous security frameworks. Some are for governance (e.g., COBIT and COSO), architecture (e.g., SABSA), and the NIST cybersecurity framework. While these generally apply broadly to technology, they may also apply to cloud environments. Other cloud-specific frameworks include the ISO/IEC 27017:2015, Cloud Control Matrix (CCM), Cloud Security Alliance, and the FedRAMP. 1. NIST Cybersecurity Framework (NIST CSF) The National Institute of Standards and Technology’s Cybersecurity Framework (NIST CSF) outlines a set of guidelines for securing security systems. It has five core capabilities: Identify, Protect, Detect, Respond, and Recover. Identify – What processes, assets, and systems need protection? Protect – Develop and implement the right safeguards to ensure critical infrastructure services delivery. Detect – Implement the appropriate mechanisms to enable the timely discovery of cybersecurity incidents. Respond – Develop techniques to contain the impact of potential cybersecurity incidents. Recover – Implement appropriate measures to restore business capabilities and services affected by cybersecurity events. While the NIST CSF is a general framework for the security of your organization’s systems, these five pillars can help you assess and manage cloud-related security risks. 2. ISO/IEC 27017:2015 ISO 27017 is a cloud security framework that defines guidelines on information security issues specific to the cloud. The framework’s security controls add to the ISO/IEC 27002 and ISO/IEC 27001 standards’ recommendations. The framework also offers specific security measures and implementation advice for cloud service providers and applications. 3. Sherwood Applied Business Security Architecture (SABSA) First developed by John Sherwood, SABSA is an Enterprise Security Architecture Framework that provides guidelines for developing business-driven, risk, and opportunity-focused security architectures to support business objectives. The SABSA framework aims to prioritize your business needs, meaning security services are designed and developed to be an integral part of your business and IT infrastructure. Here are some core principles of the Gartner-recommended SABSA framework for enterprises: It is business-driven. SABSA ensures security is integrated into your entire business strategy. This means there’s a strong emphasis on understanding your organization’s business objectives. So, any security measure is aligned with those objectives. SABSA is a risk-based approach. It considers security vulnerabilities, threats, and their potential impacts to prioritize security operations and investments. This helps your organization allocate resources effectively to address the most critical risks first. It promotes a layered security architecture. Earlier, we mentioned how a layered approach can help you align business and technical needs. So, it’s expected that this is a core principle of SABSA. This allows you to deploy multiple security controls across different layers, such as physical security, network security, application security, and data security. Each layer focuses on a specific security aspect and provides special controls and measures. Transparency: SABSA provides two-way traceability; that is, a clear two-way relationship exists between aligning security requirements and business goals. This provides a clear overview of where expenditure is made ad the value that is returned. Modular approach: SABSA offers agility for ease of implementation and management. This can make your business flexible when meeting changing market or economic conditions. 4. MITRE ATT&CK The MITRE ATT&CK framework is a repository of techniques and tactics that threat hunters, defenders, red teams, and security architects can use to classify, identify, and assess attacks. Instead of focusing on security controls and mechanisms to mitigate threats, this framework targets the techniques that hackers and other threat actors use in the cloud. So, using this framework can be excellent if you want to understand how potential attack vectors operate. It can help you become proactive and strengthen your cloud security posture through improved detection and incident response. 5. Cloud Security Alliance Cloud Controls Matrix (CSA CCM) The CSA CCM is a cybersecurity control framework specifically for cloud computing. It contains 197 control objectives structured in 17 domains that cover every critical aspect of cloud technology. Cloud customers and cloud service providers (CSPs) can use this tool to assess cloud implementation systematically. It also guides customers on the appropriate security controls for implementation by which actor in the cloud supply chain. 6. Cloud Security Alliance Security Trust Assurance and Risk (CSA STAR) The CSA STAR framework is for CSPs. It combines the principles of transparency, thorough auditing, and harmonization of standards. What CSA STAR does is to help you, as a cloud customer, assess a cloud service provider’s reliability and security posture. There are two ways this can happen: CSA STAR Certification: This is a rigorous third-party assessment of the CSP’s security controls, posture, and practices. The CSP undergoes a thorough audit based on the CSA’s Cloud Control Matrix (CCM), which is a set of cloud security controls aligned with industry standards. CSA STAR Self-Assessment: The CSA also has a Consensus Assessment Initiative Questionnaire (CAIQ). CSPs can use this to test and report on their security controls and practices. Since it’s a self-assessment procedure, it allows CSPs to be transparent, enabling customers like you to understand a CSP’s security capabilities before adopting their services. Challenges and Considerations in Cloud Security Architecture Before any cloud deployment, it’s important to understand the threats you may face, such as privilege-based attacks and malware, and be prepared for them. Since there are many common threats, we’ll quickly run through the most high-profile ones with the most devastating impacts. It’s important to remember some threats may also be specific to the type of cloud service model. 1. Insider risks This includes the employees in your organization who have access to data, applications, and systems, as well as CSP administrators. Whenever you subscribe to a CSP’s services, you entrust your workloads to the staff who maintain the CSP architecture. 2. DoS attacks Direct denial-of-service (DDoS) attacks are critical issues in cloud environments. Although security perimeters can deflect temporary DDoS attacks to filter out repeated requests, permanent DoS attacks are more damaging to your firmware and render the server unbootable. If this happens, you may need to physically reload the firmware and rebuild the system from the ground up, resulting in business downtime for weeks or longer. 3. Data availability You also want to consider how much of your data is accessible to the government. Security professionals are focusing on laws and examples that demonstrate when and how government authorities can access data in the cloud, whether through legal processes or court rulings. 4. Cloud-connected Edge Systems The concept of “cloud edge” encompasses both edge systems directly connected to the cloud and server architecture that is not directly controlled by the cloud service provider (CSP). To extend their services to smaller or remote locations, global CSPs often rely on partners as they cannot have facilities worldwide. Consequently, CSPs may face limitations in fully regulating hardware monitoring, ensuring physical box integrity, and implementing attack defenses like blocking USB port access. 5. Hardware Limitations Having the most comprehensive cloud security architecture still won’t help you create stronger passwords. While your cloud security architects focus on the firmware, hardware, and software, it’s down to the everyday users to follow best practices for staying safe. Best Practices in Cloud Security Architecture The best practices in Cloud Security Architecture are highlighted below: 1. Understand the shared responsibility model Cloud security is implemented with a shared responsibility model. Although, as the cloud customer, you may have most of the obligation, the cloud provider also shares some of the responsibility. Most vendors, such as Amazon Web Services (AWS) and Microsoft Azure, have documentation that clearly outlines your specific responsibilities depending on the deployment type. It’s important to clearly understand your shared responsibility model and review cloud vendor policies. This will prevent miscommunications and security incidents due to oversight. 2. Secure network design and segmentation This is one of the principles of cloud security architecture – and by extension, a best practice. Secure network design and segmentation involve dividing the network into isolated segments to avoid lateral movements during a breach. Implementing network segmentation allows your organization to contain potential risks and attacks within a specific segment. This can minimize the effects of an incident on your entire network and protect critical assets within the cloud infrastructure. 3. Deploy an Identity and access management (IAM) solution Unauthorized access is one of the biggest problems facing cloud security. Although hackers now use sophisticated tools to gain access to sensitive data, implementing a robust identity and access management (IAM) system can help prevent many threats. Consider access policies like role-based access control (RBAC) permissions, multi-factor authentication (MFA), and continuous threat monitoring. 4. Consider a CASB or Cloud Security Solution (e.g., Cloud-Native Application Protection (CNAPP) and Cloud Workload Protection Platforms (CWPP) Cloud Access Security Brokers (CASBs) provide specialized tools to enforce cloud security policies. Implementing a CASB solution is particularly recommended if you have a multi-cloud environment involving different vendors. Since a CASB acts as an intermediary between your organization’s on-premise infrastructure and CSPs, it allows your business to extend security policies and controls to the cloud. CASBs can enhance your data protection through features like data loss prevention, tokenization, and encryption. Plus, they help you discover and manage shadow IT through visibility into unauthorized cloud services and applications. Besides CASB solutions, you should also consider other solutions for securing your cloud environments. This includes cloud-native application protection (CNAPP) and cloud workload protection platforms (CWPP). For example, a CNAPP like Prevasio can improve your cloud security architecture with tailored solutions and automated security management. 5. Conduct Audits, Penetration Testing, and Vulnerability Testing Whether or not you outsource security, performing regular penetration tests and vulnerability is necessary. This helps you assess the effectiveness of your cloud security measures and identify potential weaknesses before hackers exploit them. You should also perform security audits that evaluate cloud security vendors’ capabilities and ensure appropriate access controls are in place. This can be achieved by using the guidelines of some frameworks we mentioned earlier, such as the CSA STAR. 6. Train Your Staff Rather than hiring new hires, training your current staff may be beneficial. Your employees have been at your company for a while and are already familiar with the organization’s culture, values, and processes. This could give them an advantage over new hires. As most existing IT skills can be reused, upskilling employees is more efficient and may help you meet the immediate need for a cloud IT workforce. Train your staff on recognizing simple and complex cybersecurity threats, such as creating strong passwords, identifying social engineering attacks, and advanced topics like risk management. 7. Mitigate Cloud Misconfigurations A misconfigured bucket could give access to anyone on the internet. To minimize cloud misconfigurations and reduce security risks, managing permissions in cloud services carefully is crucial. Misconfigurations, such as granting excessive access permissions to external users, can enable unauthorized access and potential data breaches. Attackers who compromise credentials can escalate their privileges, leading to further data theft and broader attacks within the cloud infrastructure. Therefore, it is recommended that IT, storage, or security teams, with assistance from development teams, personally configure each cloud bucket, ensuring proper access controls and avoiding default permissions. 8. Ensure compliance with regulatory requirements Most organizations today need to comply with strict regulatory requirements. This is especially important if you collect personally identifiable information (PII) or if your business is located in certain regions. Before you adopt a new cloud computing service, assess their compliance requirements and ensure they can fulfill data security needs. Failure to meet compliance requirements can lead to huge penalties. Other best practices for your cloud security include continuous monitoring and threat intelligence, data encryption at rest and in transit, and implementing intrusion detection and intrusion prevention systems. Conclusion When establishing a robust cloud security architecture, aligning business objectives and technical needs is important. Your organization must understand the shared responsibility model, risks, the appropriate implementation framework, and best practices. However, designing and developing cloud computing architectures can be complicated. Prevasio can secure your multi-cloud environment in minutes. Want to improve your cloud security configuration management? Prevasio’s agentless CNAPP can provide complete visibility over cloud resources, ensure compliance, and provide advanced risk monitoring and threat intelligence. Speak to us now. Schedule a demo Related Articles 2025 in review: What innovations and milestones defined AlgoSec’s transformative year in 2025? AlgoSec Reviews Mar 19, 2023 · 2 min read Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call
- AlgoSec | CSPM importance for CISOs. What security issues can be prevented\defended with CSPM?
Cloud Security is a broad domain with many different aspects, some of them human. Even the most sophisticated and secure systems can be... Cloud Security CSPM importance for CISOs. What security issues can be prevented\defended with CSPM? Rony Moshkovich 2 min read Rony Moshkovich Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 6/17/21 Published Cloud Security is a broad domain with many different aspects, some of them human. Even the most sophisticated and secure systems can be jeopardized by human elements such as mistakes and miscalculations. Many organizations are susceptible to such dangers, especially during critical tech configurations and transfers. Especially for example, during digital transformation and cloud migration may result in misconfigurations that can leave your critical applications vulnerable and your company’s sensitive data an easy target for cyber-attacks. The good news is that Prevasio, and other cybersecurity providers have brought in new technologies to help improve the cybersecurity situation across multiple organizations. Today, we discuss Cloud Security Posture Management (CSPM) and how it can help prevent not just misconfigurations in cloud systems but also protect against supply chain attacks. Understanding Cloud Security Posture Management First, we need to fully understand what a CSPM is before exploring how it can prevent cloud security issues. CSPM is first of all a practice for adopting security best practices as well as automated tools to harden and manage the company security strength across various cloud based services such as Software as a Service (SaaS), Infrastructure as a Service (IaaS), and Platform as a Service (PaaS). These practices and tools can be used to determine and solve many security issues within a cloud system. Not only is CSPM critical to the growth and integrity of your cloud infrastructure, but it’s also mandatory for organizations with CIS, GDPR, PCI-DSS, NIST, HIPAA and similar compliance requirements. How Does CSPM Work? There are numerous cloud service providers such as AWS , Azure , Google Cloud, and others that provide hyper scaling cloud hosted platforms as well as various cloud compute services and solutions to organizations that previously faced many hurdles with their on-site cloud infrastructures. When you migrate your organization to these platforms, you can effectively scale up and cut down on on-site infrastructure spending. However, if not appropriately handled, cloud migration comes with potential security risks. For instance, an average Lift and Shift transfer that involves a legacy application may not be adequately security hardened or reconfigured for safe use in a public cloud setup. This may result in security loopholes that expose the network and data to breaches and attacks. Cloud misconfiguration can happen in multiple ways. However, the most significant risk is not knowing that you are endangering your organization with such misconfigurations. That being the case, below are a few examples of cloud misconfigurations that can be identified and solved by CSPM tools such as Prevasio within your cloud infrastructure: Improper identity and access management : Your organization may not have the best identity and access management system in place. For instance, lack of Multi-Factor Authentication (MFA) for all users, unreliable password hygiene, and discriminatory user policies instead of group access, Role-based access, and everything contrary to best practices, including least privilege. You are unable to log in to events in your cloud due to an accidental CloudTrail error. Cloud storage misconfigurations : Having unprotected S3 buckets on AWS or Azure. CSPM can compute situations that have the most vulnerabilities within applications Incorrect secret management : Secret credentials are more than user passwords or pins. They include encryption keys, API keys, among others. For instance, every admin must use encryption keys on the server-side and rotate the keys every 90 days. Failure to do this can lead to credentials misconfigurations. Ideally, part of your cloud package must include and rely on solutions such as AWS Secrets Manager , Azure Key Vault , and other secrets management solutions. The above are a mere few examples of common misconfigurations that can be found in your cloud infrastructure, but CSPM can provide additional advanced security and multiple performance benefits. Benefits Of CSPM CSPM manages your cloud infrastructure. Some of the benefits of having your cloud infrastructure secured with CSPM boils down to peace of mind, that reassurance of knowing that your organization’s critical data is safe. It further provides long-term visibility to your cloud networks, enables you to identify violations of policies, and allows you to remediate your misconfigurations to ensure proper compliance. Furthermore, CSPM provides remediation to safeguard cloud assets as well as existing compliance libraries. Technology is here to stay, and with CSPM, you can advance the cloud security posture of your organization. To summarize it all, here are what you should expect with CSPM cloud security: Risk assessment : CSPM tools can enable you to see your network security level in advance to gain visibility into security issues such as policy violations that expose you to risk. Continuous monitoring : Since CSPM tools are versatile they present an accurate view of your cloud system and can identify and instantly flag off policy violations in real-time. Compliance : Most compliance laws require the adoption of CIS, NIST, PCI-DSS, SOC2, HIPAA, and other standards in the cloud. With CSPM, you can stay ahead of internal governance, including ISO 27001. Prevention : Most CSPM allows you to identify potential vulnerabilities and provide practical recommendations to prevent possible risks presented by these vulnerabilities without additional vendor tools. Supply Chain Attacks : Some CSPM tools, such as Prevasio , provides you malware scanning features to your applications, data, and their dependency chain on data from external supply chains, such as git imports of external libraries and more. With automation sweeping every industry by storm, CSPM is the future of all-inclusive cloud security. With cloud security posture management, you can do more than remediate configuration issues and monitor your organization’s cloud infrastructure. You’ll also have the capacity to establish cloud integrity from existing systems and ascertain which technologies, tools, and cloud assets are widely used. CSPM’s capacity to monitor cloud assets and cyber threats and present them in user-friendly dashboards is another benefit that you can use to explore, analyze and quickly explain to your team(s) and upper management. Even find knowledge gaps in your team and decide which training or mentorship opportunities your security team or other teams in the organization might require. Who Needs Cloud Security Posture Management? At the moment, cloud security is a new domain that its need and popularity is growing by the day. CSPM is widely used by organizations looking to maximize in a safe way the most of all that hyper scaling cloud platforms can offer, such as agility, speed, and cost-cutting strategies. The downside is that the cloud also comes with certain risks, such as misconfigurations, vulnerabilities and internal\external supply chain attacks that can expose your business to cyber-attacks. CSPM is responsible for protecting users, applications, workloads, data, apps, and much more in an accessible and efficient manner under the Shared Responsibility Model. With CSPM tools, any organization keen on enhancing its cloud security can detect errors, meet compliance regulations, and orchestrate the best possible defenses. Let Prevasio Solve Your Cloud Security Needs Prevasio’s Next-Gen CSPM solution focus on the three best practices: light touch\agentless approach, super easy and user-friendly configuration, easy to read and share security findings context, for visibility to all appropriate users and stakeholders in mind. Our cloud security offerings are ideal for organizations that want to go beyond misconfiguration, legacy compliance or traditional vulnerability scanning. We offer an accelerated visual assessment of your cloud infrastructure, perform automated analysis of a wide range of cloud assets, identify policy errors, supply-chain threats, and vulnerabilities and position all these to your unique business goals. What we provide are prioritized recommendations for well-orchestrated cloud security risk mitigations. To learn more about us, what we do, our cloud security offerings, and how we can help your organization prevent cloud infrastructure attacks, read all about it here . Schedule a demo Related Articles 2025 in review: What innovations and milestones defined AlgoSec’s transformative year in 2025? AlgoSec Reviews Mar 19, 2023 · 2 min read Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call
- AlgoSec | Sunburst Backdoor, Part III: DGA & Security Software
In the previous parts of our blog ( part I and part II ), we have described the most important parts of the Sunburst backdoor... Cloud Security Sunburst Backdoor, Part III: DGA & Security Software Rony Moshkovich 2 min read Rony Moshkovich Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 12/22/20 Published In the previous parts of our blog ( part I and part II ), we have described the most important parts of the Sunburst backdoor functionality and its Domain Generation Algorithm (DGA). This time, let’s have a deeper look into the passive DNS requests reported by Open-Source Context and Zetalytics . The valid DNS requests generated by the malware fall into 2 groups: DNS requests that encode a local domain name DNS requests that encode data The first type of DNS requests allows splitting long domain names into separate requests. These requests are generated by the malware’s functions GetPreviousString() and GetCurrentString() . In general, the format of a DNS request that encodes a domain name may look like: USER_ID.NUM.COMPUTER_DOMAIN[.]appsync-api.us-west-2[.]avsvmcloud[.]com where: USER_ID is an 8-byte user ID that uniquely identifies a compromised host, encoded as a 15-character string NUM is a number of a domain name – either 0 or 1, encoded as a character COMPUTER_DOMAIN is an encoded local computer domain Let’s try decoding the following 3 DNS requests: olc62cocacn7u2q22v02eu.appsync-api.us-west-2.avsvmcloud.com r1qshoj05ji05ac6eoip02jovt6i2v0c.appsync-api.us-west-2.avsvmcloud.com lt5ai41qh5d53qoti3mkmc0.appsync-api.us-west-2.avsvmcloud.com String 1 Let’s start from the 1st string in the list: olc62cocacn7u2q22v02eu.appsync-api.us-west-2.avsvmcloud.com. In this string, the first 15-character string is an encoded USER_ID : “olc62cocacn7u2q” . Once it is base-64 decoded, as explained in the previous post, it becomes a 9-byte byte array: 86 7f 2f be f9 fb a3 ae c4 The first byte in this byte array is a XOR key: 0x86 . Once applied to the 8 bytes that follow it, we get the 8-byte user ID – let’s take a note and write it down, we will need it later: f9 a9 38 7f 7d 25 28 42 Next, let’s take the NUM part of the encoded domain: it’s a character “2” located at the position #15 (starting from 0) of the encrypted domain. In order to decode the NUM number, we have to take the first character of the encrypted domain, take the reminder of its division by 36 , and subtract the NUM ‘s position in the string “0123456789abcdefghijklmnopqrstuvwxyz” : num = domain[0] % 36 – “0123456789abcdefghijklmnopqrstuvwxyz”.IndexOf(domain.Substring(15, 1)); The result is 1 . That means the decrypted domain will be the 2nd part of a full domain name. The first part must have its NUM decoded as 0. The COMPUTER_DOMAIN part of the encrypted domain is “2v02eu” . Once decoded, using the previously explained method, the decoded computer domain name becomes “on.ca” . String 2 Let’s decode the second passive DNS request from our list: r1qshoj05ji05ac6eoip02jovt6i2v0c.appsync-api.us-west-2.avsvmcloud.com Just as before, the decoded 8-byte user ID becomes: f9 a9 38 7f 7d 25 28 42 The NUM part of the encoded domain, located at the position #15 (starting from 0), is a character “6” . Let’s decode it, by taking the first character ( “r” = 114 ), take the reminder of its division by 36 ( 114 % 36 = 6 ), and subtracting the position of the character “6” in the “0123456789abcdefghijklmnopqrstuvwxyz” , which is 6 . The result is 0 . That means the decrypted domain will be the 1st part of the full domain name. The COMPUTER_DOMAIN part of the encrypted domain is “eoip02jovt6i2v0c” . Once decoded, it becomes “city.kingston.” Next, we need to match 2 decrypted domains by the user ID, which is f9 a9 38 7f 7d 25 28 42 in both cases, and concatenate the first and the second parts of the domain. The result will be “city.kingston.on.ca” . String 3 Here comes the most interesting part. Lets try to decrypt the string #3 from our list of passive DNS requests: lt5ai41qh5d53qoti3mkmc0.appsync-api.us-west-2.avsvmcloud.com The decoded user ID is not relevant, as the decoded NUM part is a number -29 . It’s neither 0 nor 1 , so what kind of domain name that is? If we ignore the NUM part and decode the domain name, using the old method, we will get “thx8xb” , which does not look like a valid domain name. Cases like that are not the noise, and are not some artificially encrypted artifacts that showed up among the DNS requests. This is a different type of DNS requests. Instead of encoding local domain names, these types of requests contain data. They are generated by the malware’s function GetNextStringEx() . The encryption method is different as well. Let’s decrypt this request. First, we can decode the encrypted domain, using the same base-64 method, as before . The string will be decoded into 14 bytes: 7c a5 4d 64 9b 21 c1 74 a6 59 e4 5c 7c 7f Let’s decode these bytes, starting from the 2nd byte, and using the first byte as a XOR key. We will get: 7c d9 31 18 e7 5d bd 08 da 25 98 20 00 03 In this array, the bytes marked in yellow are an 8-byte User ID, encoded with a XOR key that is selected from 2 bytes marked in red. Let’s decode User ID: for ( int i = 0 ; i < 8 ; i++) { bytes[i + 1 ] ^= bytes[ 11 - i % 2 ]; } The decoded byte array becomes: 7c f9 a9 38 7f 7d 25 28 42 25 98 20 00 03 The User ID part in marked in yellow. Does it look familiar? Indeed, it’s the same User ID we’ve seen before, when we decoded “city.kingston.on.ca ” . The next 3 bytes marked in red are: 25 98 20 . 2 0x59820 The first number 2 stands for the size of data that follows – this data is 00 03 (selected in green). The number 0x59820 , or 366,624 in decimal, is a timestamp. It’s a number of 4-second periods of time since 1 January 2010. To obtain the real time stamp, we need to multiple it by 15 to get minutes, then add those minutes to 1 January 2010: var date = ( new DateTime( 2010 , 1 , 1 , 0 , 0 , 0 , DateTimeKind.Utc)).AddMinutes(timestamp * 15 ); For the number 0x59820 , the time stamp becomes 16 July 2020 12:00:00 AM – that’s the day when the DNS request was made. The remaining 2 bytes, 00 03 , encrypt the state of 8 security products, to indicate whether each one of them is running or whether it is stopped. The 8 security products are: Windows Live OneCare / Windows Defender Windows Defender Advanced Threat Protection Microsoft Defender for Identity Carbon Black CrowdStrike FireEye ESET F-Secure 2 states for 8 products require 2 * 8 = 16 bits = 2 bytes. The 2 bytes 00 03 in binary form are: 00 00 00 00 00 00 00 11 Here, the least-significant bits 11 identify that the first product in the list, Windows Live OneCare / Windows Defender, is reported as ‘running’ ( 1 ) and as ‘stopped’ ( 1 ). Now we know that apart from the local domain, the trojanised SolarWinds software running on the same compromised host on “city.kingston.on.ca” domain has also reported the status of the Windows Defender software. What Does it Mean? As explained in the first part of our description, the malware is capable of stopping the services of security products, be manipulating registry service keys under Administrator account. It’s likely that the attackers are using DNS queries as a C2 channel to first understand what security products are present. Next, the same channel is used to instruct the malware to stop/deactivate these services, before the 2nd stage payload, TearDrop Backdoor, is deployed. Armed with this knowledge, let’s decode other passive DNS requests, printing the cases when the compromised host reports a running security software. NOTES: As a private case, if the data size field is 0 or 1 , the timestamp field is not followed with any data. Such type of DNS request is generated by the malware’s function GetNextString() . It is called ‘a ping’ in the listing below. If the first part of the domain name is missing, the recovered domain name is pre-pended with ‘*’ . The malware takes the time difference in minutes, then divides it by 30 and then converts the result from double type to int type; as a result of such conversion, the time stamps are truncated to the earliest half hour. 2D82B037C060515C SFBALLET Data: Windows Live OneCare / Windows Defender [running] 11/07/2020 12:00:00 AM Pings: 12/07/2020 12:30:00 AM 70DEE5C062CFEE53 ccscurriculum.c Data: ESET [running] 17/04/2020 4:00:00 PM Pings: 20/04/2020 5:00:00 PM AB902A323B541775 mountsinai.hospital Pings: 4/07/2020 12:30:00 AM 9ACC3A3067DC7FD5 *ripta.com Data: ESET [running] 12/09/2020 6:30:00 AM Pings: 13/09/2020 7:30:00 AM 14/09/2020 9:00:00 AM CB34C4EBCB12AF88 DPCITY.I7a Data: ESET [running] 26/06/2020 5:00:00 PM Pings: 27/06/2020 6:30:00 PM 28/06/2020 7:30:00 PM 29/06/2020 8:30:00 PM 29/06/2020 8:30:00 PM E5FAFE265E86088E *scroot.com Data: CrowdStrike [running] 25/07/2020 2:00:00 PM Pings: 26/07/2020 2:30:00 PM 26/07/2020 2:30:00 PM 27/07/2020 3:00:00 PM 27/07/2020 3:00:00 PM 426030B2ED480DED *kcpl.com Data: Windows Live OneCare / Windows Defender [running] 8/07/2020 12:00:00 AM Carbon Black [running] 8/07/2020 12:00:00 AM Full list of decoded pDNS requests can be found here . An example of a working implementation is available at this repo. Schedule a demo Related Articles 2025 in review: What innovations and milestones defined AlgoSec’s transformative year in 2025? AlgoSec Reviews Mar 19, 2023 · 2 min read Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call
- Build and Enforce Defense in-Depth | An AlgoSec-Cisco Tetration webinar | AlgoSec
Webinars Build and Enforce Defense in-Depth | An AlgoSec-Cisco Tetration webinar Micro-segmentation protects your workloads and applications against lateral movement of malware and limits the spread of insider threats, yet successfully implementing a defense-in-depth strategy using micro-segmentation is complicated. In this technical webinar, Jothi Prakash Prabakaran, Senior Product Manager at Cisco, and Yoni Geva, Product Manager at AlgoSec, will provide a step-by-step blueprint to implementing this strategy using the micro-segmentation capabilities of Cisco Tetration and network security policy management capabilities of AlgoSec. They will demonstrate how to tighten your security posture within the data center using an allow-list approach. They will also show how to enforce these granular micro-segmented policies enforced on the workloads with Cisco Tetration and a coarse grain policy enforced across the infrastructure through AlgoSec network security policy management. Watch the webinar to learn how to: Understand your business applications to create your micro-segmentation policy Validate your micro-segmentation policy is accurate Enforce these granular policies on workloads and summarized policies across your infrastructure Use risk and vulnerability analysis to tighten your workload and network security Identify and manage security risk and compliance in your micro-segmented environment July 22, 2020 Jothi Prakash Prabakaran Yoni Geva Product Manager Relevant resources AlgoSec Joins Cisco’s Global Price List Keep Reading Introducing Deeper Integration with Cisco’s Tetration Keep Reading Application Segmentation With Cisco Tetration and AlgoSec Read Document Choose a better way to manage your network Choose a better way to manage your network Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Continue
- AlgoSec | The importance of bridging NetOps and SecOps in network management
Tsippi Dach, Director of Communications at AlgoSec, explores the relationship between NetOps and SecOps and explains why they are the... DevOps The importance of bridging NetOps and SecOps in network management Tsippi Dach 2 min read Tsippi Dach Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 4/16/21 Published Tsippi Dach, Director of Communications at AlgoSec, explores the relationship between NetOps and SecOps and explains why they are the perfect partnership The IT landscape has changed beyond recognition in the past decade or so. The vast majority of businesses now operate largely in the cloud, which has had a notable impact on their agility and productivity. A recent survey of 1,900 IT and security professionals found that 41 percent or organizations are running more of their workloads in public clouds compared to just one-quarter in 2019. Even businesses that were not digitally mature enough to take full advantage of the cloud will have dramatically altered their strategies in order to support remote working at scale during the COVID-19 pandemic. However, with cloud innovation so high up the boardroom agenda, security is often left lagging behind, creating a vulnerability gap that businesses can little afford in the current heightened risk landscape. The same survey found the leading concern about cloud adoption was network security (58%). Managing organizations’ networks and their security should go hand-in-hand, but, as reflected in the survey, there’s no clear ownership of public cloud security. Responsibility is scattered across SecOps, NOCs and DevOps, and they don’t collaborate in a way that aligns with business interests. We know through experience that this siloed approach hurts security, so what should businesses do about it? How can they bridge the gap between NetOps and SecOps to keep their network assets secure and prevent missteps? Building a case for NetSecOps Today’s digital infrastructure demands the collaboration, perhaps even the convergence, of NetOps and SecOps in order to achieve maximum security and productivity. While the majority of businesses do have open communication channels between the two departments, there is still a large proportion of network and security teams working in isolation. This creates unnecessary friction, which can be problematic for service-based businesses that are trying to deliver the best possible end-user experience. The reality is that NetOps and SecOps share several commonalities. They are both responsible for critical aspects of a business and have to navigate constantly evolving environments, often under extremely restrictive conditions. Agility is particularly important for security teams in order for them to keep pace with emerging technologies, yet deployments are often stalled or abandoned at the implementation phase due to misconfigurations or poor execution. As enterprises continue to deploy software-defined networks and public cloud architecture, security has become even more important to the network team, which is why this convergence needs to happen sooner rather than later. We somehow need to insert the network security element into the NetOps pipeline and seamlessly make it just another step in the process. If we had a way to automatically check whether network connectivity is already enabled as part of the pre-delivery testing phase, that could, at least, save us the heartache of deploying something that will not work. Thankfully, there are tools available that can bring SecOps and NetOps closer together, such as Cisco ACI , Cisco Secure Workload and AlgoSec Security Management Solution . Cisco ACI, for instance, is a tightly coupled policy-driven solution that integrates software and hardware, allowing for greater application agility and data center automation. Cisco Secure Workload (previously known as Tetration), is a micro-segmentation and cloud workload protection platform that offers multi-cloud security based on a zero-trust model. When combined with AlgoSec, Cisco Secure Workload is able to map existing application connectivity and automatically generate and deploy security policies on different network security devices, such as ACI contract, firewalls, routers and cloud security groups. So, while Cisco Secure Workload takes care of enforcing security at each and every endpoint, AlgoSec handles network management. This is NetOps and SecOps convergence in action, allowing for 360-degree oversight of network and security controls for threat detection across entire hybrid and multi-vendor frameworks. While the utopian harmony of NetOps and SecOps may be some way off, using existing tools, processes and platforms to bridge the divide between the two departments can mitigate the ‘silo effect’ resulting in stronger, safer and more resilient operations. We recently hosted a webinar with Doug Hurd from Cisco and Henrik Skovfoged from Conscia discussing how you can bring NetOps and SecOps teams together with Cisco and AlgoSec. You can watch the recorded session here . Schedule a demo Related Articles 2025 in review: What innovations and milestones defined AlgoSec’s transformative year in 2025? AlgoSec Reviews Mar 19, 2023 · 2 min read Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call
- AlgoSec | Introducing AlgoSec Cloud Enterprise: Your Comprehensive App-First Cloud Security Solution
Is it getting harder and harder to keep track of all your cloud assets? You're not alone. In today's dynamic world of hybrid and... Cloud Security Introducing AlgoSec Cloud Enterprise: Your Comprehensive App-First Cloud Security Solution Iris Stein 2 min read Iris Stein Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 1/27/25 Published Is it getting harder and harder to keep track of all your cloud assets? You're not alone. In today's dynamic world of hybrid and multi-cloud environments, maintaining clear visibility of your IT infrastructure has never been more complex. 82% of organizations report that lack of visibility is a major factor in cloud security breaches. Traditional tools often fall short, leaving potential security vulnerabilities exposed and your business at risk. But there's good news! Introducing AlgoSec Cloud Enterprise (ACE) , a game-changer for managing and securing your on-premises and cloud networks. ACE provides the visibility, automation, and control you need to protect your business, no matter where your applications reside. What is AlgoSec Cloud Enterprise? AlgoSec Cloud Enterprise (ACE) is a comprehensive application-centric security solution built for the modern cloud enterprise. It empowers organizations to gain complete visibility, enforce consistent policies, and accelerate application delivery across cloud and on-premises environments. AlgoSec Cloud Enterprise (ACE) is the latest addition to AlgoSec's Horizon Platform, a comprehensive suite of security solutions designed to protect your applications and data. By integrating ACE into the Horizon Platform, AlgoSec offers a unified approach to securing your entire IT infrastructure, from on-premises to multi-cloud environments. For existing AlgoSec customers: ACE seamlessly integrates with your current AlgoSec deployments, extending your security posture to encompass the dynamic world of cloud and containers. For new AlgoSec customers: ACE provides a unified solution to manage security across your entire cloud estate, simplifying operations and reducing risk. Key Features and Capabilities ACE is packed with powerful features to help you take control of your application security: Deep application visibility: ACE discovers and maps all your applications and their components, providing a comprehensive view of your application landscape. You gain insights into application dependencies, vulnerabilities, and risks, enabling you to identify and address security gaps proactively. Unified security policy management: Define and enforce consistent security policies across all your environments, from the cloud to on-premises. This ensures uniform protection for all your applications and simplifies security management. Automated security and compliance: Automate critical security tasks, such as vulnerability assessment, compliance monitoring, and security change management. This reduces the risk of human error and frees up your security team to focus on more strategic initiatives. Organizations using automation in their security operations report a 25% reduction in security incidents . Streamlined change management: Accelerate application delivery with automated security workflows. ACE simplifies change management processes, ensuring that security keeps pace with the speed of your business. Maintain a full audit trail of all changes for complete compliance and accountability. Detect and prevent risks across the supply chain and CI/CD pipelines: Identify vulnerabilities in applications and block malicious containerized workloads from compromising business-critical production environments. Addressing Customer Pain Points ACE is designed to solve the real-world challenges faced by security teams today: Reduce application risk: Proactively identify and mitigate vulnerabilities and security threats to your applications. Accelerate application delivery: Streamline security processes and automate change management to speed up deployments. Ensure application compliance: Meet regulatory requirements and industry standards with automated compliance monitoring and reporting. Gain complete visibility: Understand your application landscape and identify potential security risks. Simplify application security management: Manage security policies and controls from a single, unified pane of glass. Prevent vulnerabilities from moving to production Ready to take your application security to the next level? Visit the AlgoSec Cloud Enterprise product page to learn more. Download our datasheet, request a personalized demo, or sign up for a free trial to experience the power of ACE for yourself. We're confident that ACE will revolutionize the way you secure your applications in the cloud. Contact us today to get started! Schedule a demo Related Articles 2025 in review: What innovations and milestones defined AlgoSec’s transformative year in 2025? AlgoSec Reviews Mar 19, 2023 · 2 min read Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call
- Achieving application-driven security across your hybrid network
Learn how to unify, consolidate, and automate your entire network security policy management across your Cisco and multi vendor estate Webinars Cisco & AlgoSec Achieving application-driven security across your hybrid network Your network extends into hybrid environments and may include private clouds running Cisco ACI, and on-premises devices. Managing network security policies in your multi-vendor estate is complex. Because your network is made up of multiple vendors and each part of your network estate is managed in its own silo, it is tough to get centralized management of your entire network. Making changes is a chore and validating security is difficult. Learn how to unify, consolidate, and automate your entire network security policy management across your Cisco and multi-vendor estate. In this session Roxana Diaz, Worldwide Technical Solutions Architect at Cisco, and Yonatan Klein, AlgoSec’s Director of Product, will discuss how to manage the Cisco and multi-cloud estate and how to: Capitalize on your Cisco ACI investment to take advantage of its full capabilities Bring centralized visibility, automation, and compliance monitoring into your Cisco and multi-vendor network ecosystem Get full visibility of your entire hybrid network estate, including items within the Cisco ACI security environment, as well as outside it, including Cisco firewalls and routers, as well as multi-vendor devices. Take advantage of Cisco Tetration Analytics and AlgoSec’s intelligent discovery to get a full picture of your network and application traffic and to design and provision a micro-segmentation network policy design. Unify, consolidate, and automate your network security policy management Proactively assess risk throughout your entire network, including Cisco ACI contracts, and recommend the necessary changes to eliminate misconfigurations and compliance violations June 10, 2020 Yonatan Klein irector of Product Management Roxana Diaz Worldwide Technical Solutions Architect at Cisco Relevant resources AlgoSec Joins Cisco’s Global Price List Keep Reading Migrating and Managing Security Policies in a Segmented Data Center Keep Reading AlgoSec Cisco ACI App Center Demo Watch Video Choose a better way to manage your network Choose a better way to manage your network Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Continue
- Cloud migrations made simpler: Safe, Secure and Successful Migrations | AlgoSec
Webinars Cloud migrations made simpler: Safe, Secure and Successful Migrations Migrating applications to the cloud – without creating security holes, application outages or violating compliance – is within reach! In this webinar, Avivi Siman-Tov, Director of Product at AlgoSec, will guide you how to simplify and accelerate large-scale complex application migration projects. The webinar will cover: Why organizations choose to migrate their applications to the cloud What is required in order to move the security portion of your application and how long it may take Challenges and solutions to lower the cost, better prepare for the migration and reduce the risks involved How to deliver unified security policy management across the hybrid cloud environment October 28, 2020 Avivi Siman Tov Director of Product Relevant resources Cloud atlas: how to accelerate application migrations to the cloud Keep Reading A 3 Layered Approach to Application Migration Download (Multiligual) Migrating Application Connectivity to the Cloud Keep Reading CouchTalk: Software Defined Networks (SDN) – Migration, Security and Management Watch Video Choose a better way to manage your network Choose a better way to manage your network Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Continue
- AlgoSec | Bridging Network Security Gaps with Better Network Object Management
Prof. Avishai Wool, AlgoSec co-founder and CTO, stresses the importance of getting the often-overlooked function of managing network... Professor Wool Bridging Network Security Gaps with Better Network Object Management Prof. Avishai Wool 2 min read Prof. Avishai Wool Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 4/13/22 Published Prof. Avishai Wool, AlgoSec co-founder and CTO, stresses the importance of getting the often-overlooked function of managing network objects right, particularly in hybrid or multi-vendor environments Using network traffic filtering solutions from multiple vendors makes network object management much more challenging. Each vendor has its own management platform, which often forces network security admins to define objects multiple times, resulting in a counter effect. First and foremost, this can be an inefficient use of valuable resources from a workload bottlenecking perspective. Secondly, it creates a lack of naming consistency and introduces a myriad of unexpected errors, leading to security flaws and connectivity problems. This can be particularly applicable when a new change request is made. With these unique challenges at play, it begs the question: Are businesses doing enough to ensure their network objects are synchronized in both legacy and greenfield environments? What is network object management? At its most basic, the management of network objects refers to how we name and define “objects” within a network. These objects can be servers, IP addresses, or groups of simpler objects. Since these objects are subsequently used in network security policies, it is imperative to simultaneously apply a given rule to an object or object group. On its own, that’s a relatively straightforward method of organizing the security policy. But over time, as organizations reach scale, they often end up with large quantities of network objects in the tens of thousands, which typically lead to critical mistakes. Hybrid or multi-vendor networks Let’s take name duplication as an example. Duplication on its own is bad enough due to the wasted resource, but what’s worse is when two copies of the same name have two distinctly different definitions. Let’s say we have a group of database servers in Environment X containing three IP addresses. This group is allocated a name, say “DBs”. That name is then used to define a group of database servers in Environment Y containing only two IP addresses because someone forgot to add in the third. In this example, the security policy rule using the name DBs would look absolutely fine to even a well-trained eye, because the names and definitions it contained would seem identical. But the problem lies in what appears below the surface: one of these groups would only apply to two IP addresses rather than three. As in this case, minor discrepancies are commonplace and can quickly spiral into more significant security issues if not dealt with in the utmost time-sensitive manner. It’s important to remember that accuracy is the name in this game. If a business is 100% accurate in the way it handles network object management, then it has the potential to be 100% efficient. The Bottom Line The security and efficiency of hybrid multi-vendor environments depend on an organization’s digital hygiene and network housekeeping. The naming and management of network objects aren’t particularly glamorous tasks. Having said that, everything from compliance and automation to security and scalability will be far more seamless and risk averse if taken care of correctly. To learn more about network object management and why it’s arguably more important now than ever before, watch our webcast on the subject or read more in our resource hub . Schedule a demo Related Articles 2025 in review: What innovations and milestones defined AlgoSec’s transformative year in 2025? AlgoSec Reviews Mar 19, 2023 · 2 min read Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call
- Optimize your Juniper Investment with Intelligent Network Security Automation | AlgoSec
Webinars Optimize your Juniper Investment with Intelligent Network Security Automation Are you maximizing all the capabilities that your Juniper solutions offer? Expand its potential and maximize your ROI. Discover how to secure your homogeneous and multi-vendor network with intelligent automation. In this webinar, Max Shirshov, EMEA Solutions Architect at AlgoSec, will demonstrate how to assess risk and audit the firewall estate for regulatory compliance, address security breaches caused by misconfigured network devices, and provide fast and efficient change management utilizing the AlgoSec Security Management solution for your Juniper devices. Join the webinar to learn how to: Gain complete visibility into your Juniper-estate as well as multi-vendor and hybrid networks Intelligently push security policy changes to your Netscreen and SRX firewalls, MX routers and Juniper Space, as well as other vendors’ security devices, SDN and public clouds Automate application and user aware security policy management and ensure your Juniper devices are properly configured Assess risk and ensure regulatory compliance across your entire enterprise environment March 24, 2020 Max Shirshov Relevant resources AlgoSec & Juniper Networks Keep Reading The Juniper Networks Vulnerability Does Not Change Network Security Fundamentals Keep Reading Choose a better way to manage your network Choose a better way to manage your network Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Continue
- Tightening security posture with micro-segmentation
Webinars Tightening security posture with micro-segmentation Micro-segmentation protects your network by limiting the lateral movement of ransomware and other threats in your network. Yet successfully implementing a defense-in-depth strategy using micro-segmentation may be complicated. In this second webinar in a series of two webinars about ransomware, Yitzy Tannenbaum, Product Marketing Manager from AlgoSec and Jan Heijdra, Cisco Security Specialist, will provide a blueprint to implementing micro-segmentation using Cisco Secure Workload (formerly Cisco Tetration) and AlgoSec Network Security Policy Management. Join our live webinar to learn: Why micro-segmentation is critical to fighting ransomware Understand your business applications to create your micro-segmentation policy Validate your micro-segmentation policy is accurate Enforce these granular policies on workloads and summarized policies across your infrastructure Use risk and vulnerability analysis to tighten your workload and network security Identify and manage security risk and compliance in your micro-segmented environment January 27, 2021 Jan Heijdra Cisco Security Specialist Yitzy Tannenbaum Product Marketing Manager Relevant resources Micro-segmentation – from strategy to execution Keep Reading Defining & Enforcing a Micro-segmentation Strategy Read Document Building a Blueprint for a Successful Micro-segmentation Implementation Keep Reading Choose a better way to manage your network Choose a better way to manage your network Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Continue











