

Search results
696 results found with an empty search
- Find A Job | AlgoSec
Join Algosec and be part of a global team driving innovation in network security. Explore exciting career opportunities and grow with us. Find a job By Job Category By Location By Keyword - Found 37 Positions - Full Stack Automation Developer, India Read More Product Manager, Americas Read More Regional Sales Manager, DACH Read More Regional Sales Manager, West Read More Software Developer Student, Israel Read More Regional Sales Engineer, Canada Read More Regional Sales Manager, Ohio Valley Read More Customer Success Manager (Technical), US Read More Customer Success Manager (Technical), UK Read More Software Developer, Israel Read More Technical Support Engineer, Brazil Read More Customer Success Manager (Technical), Canada Read More Professional Services Engineer, India Read More Software Developer, India Read More Channel Manager, East Read More AlgoNext Automation Developer, India Read More Software Developer, India Read More Automation Developer, India Read More Technical Support Engineer, India Read More Regional Sales Engineer, Mid Atlantic Read More Product Designer Israel Read More Release Manager- Temporary position, Israel Read More Software Developer (Devices), India Read More Sales Development Representative, West Read More Channel Manager, West Read More Prevasio Automation Developer, India Read More Suite Software Developer, India Read More Regional Sales Manager, Canada Read More Regional Sales Manager, NY Metro Read More Product Marketing Manager, IL Read More Sales Development Representative, APAC Read More Customer Success Manager, India Read More Commercial Legal Counsel, US Read More Regional Sales Manager, Pacific NW Rockies Read More CloudFlow Automation Developer, India Read More Automation TL, India Read More Regional Sales Engineer, West Read More
- Financial Institutions: Best Practices for Security & Compliance in the Era of Digital Transformation | AlgoSec
Explore best practices for security and compliance in financial institutions, ensuring robust protection and adherence to regulations amid digital transformation. Financial Institutions: Best Practices for Security & Compliance in the Era of Digital Transformation ---- ------- Schedule a Demo Select a size ----- Get the latest insights from the experts Choose a better way to manage your network
- Retirement fund | AlgoSec
Explore Algosec's customer success stories to see how organizations worldwide improve security, compliance, and efficiency with our solutions. Australia’s Leading Superannuation Provider Organization Retirement fund Industry Financial Services Headquarters Australia Download case study Share Customer success stories "It’s very easy to let security get left behind. We want to make sure that security is not a roadblock to business performance,” said Bryce. “We need to be agile and we need to make sure we can deploy systems to better support our members. Automation can really help you see that return-on-investment." Network Security Policy Automation helps Superannuation company reduce costs to provide higher returns to members Background The company is one of Australia’s leading superannuation (pension) providers. Their job is to protect their client’s money, information, and offer long-term financial security. Challenges The company’s firewalls were managed by a Managed Service Security Provider (MSSP) and there had not been enough insight and analysis into their network over the years, leading to a bloated and redundant network infrastructure. Firewalls and infrastructure did not get the care and attention they needed. As a result, some of their challenges included: Legacy firewalls that had not been adequately maintained Difficulty identifying and quantifying network risk Lack of oversight and analysis of the changes made by their Managed Services Security Provider (MSSP) Change requests for functionality that was already covered by existing rules The Solution The customer was searching for a solution that provided: A strong local presence Repeatable and recordable change management processes As a result, the customer implemented AlgoSec. The client selected AlgoSec’s Security Policy Management Solution, which includes AlgoSec Firewall Analyzer and AlgoSec FireFlow. AlgoSec Firewall Analyzer delivers visibility and analysis of complex network security policies across on-premise, cloud, and hybrid networks. It automates and simplifies security operations including troubleshooting, auditing, and risk analysis. Using Firewall Analyzer, they can optimize the configuration of firewalls, and network infrastructure to ensure security and compliance. AlgoSec FireFlow enables security staff to automate the entire security policy change process from design and submission to proactive risk analysis, implementation, validation, and auditing. Its intelligent, automated workflows save time and improve security by eliminating manual errors and reducing risk. The Results “Straight away, we were able to see a return-on-investment,” said Stefan Bryce, Security Manager, a leading Australian superannuation provider. By using the AlgoSec Security Management Solution, the customer gained: Greater insight and oversight into their firewalls and other network devices Identification of risky rules and other holes in their network security policy. Easier cleanup process due to greater visibility Audits and accountability into their network security policy changes. They were able to ensure ongoing compliance and make sure that rules submitted did not introduce additional risk Identification and elimination of duplicate rules Faster implementation of policy changes Business agility and innovation because employees are better motivated to make changes due to seamless policy change process. Consolidation of their virtual firewall internal infrastructure Reduced ongoing costs to their MSSP Schedule time with one of our experts
- Advanced Cyber Threat and Incident Management | algosec
Security Policy Management with Professor Wool Advanced Cyber Threat and Incident Management Advanced Cyber Threat and Incident Management is a whiteboard-style series of lessons that examine some of the challenges and provide technical tips for helping organizations detect and quickly respond to cyber-attacks while minimizing the impact on the business. Lesson 1 SIEM solutions collect and analyze logs generated by the technology infrastructure, security systems and business applications. The Security Operations Center (SOC) team uses this information to identify and flag suspicious activity for further investigation. In this lesson, Professor Wool explains why it’s important to connect the information collected by the SIEM with other databases that provide information on application connectivity, in order to make informed decisions on the level of risk to the business, and the steps the SOC needs to take to neutralize the attack. How to bring business context into incident response Watch Lesson 2 In this lesson Professor Wool discusses the need for reachability analysis in order to assess the severity of the threat and potential impact of an incident. Professor Wool explains how to use traffic simulations to map connectivity paths to/from compromised servers and to/from the internet. By mapping the potential lateral movement paths of an attacker across the network, the SOC team can, for example, proactively take action to prevent data exfiltration or block incoming communications with Command and Control servers. Bringing reachability analysis into incident response Watch Have a Question for Professor Wool? Ask him now Choose a better way to manage your network Choose a better way to manage your network Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Continue
- Network management & policy change automation | AlgoSec
Automate network management and policy changes to increase efficiency, reduce errors, and ensure security compliance across your network infrastructure. Network management & policy change automation Overview This eBook provides practical suggestions for implementing a change automation process, lays out the pitfalls, and gives practical tips for choosing a change management solution. Schedule a Demo Cure the network management headache In today’s IT environment, the only constant is change. Business needs change. As your business changes, so must your security policies. The problem Change comes with challenges, leading to major headaches for IT operations and security teams. This develops into huge business problems: Manual workflows and change management processes are time-consuming and hinder business agility. Improper management changes lead to serious business risks – as benign as blocking legitimate traffic all the way to network outages. The solution Automation and actionable intelligence can enhance security and business agility – without the headaches and misconfigurations caused by manual, ad-hoc processes. In this document, you will learn the secrets of how to elevate your firewall change management from manual labor-intensive work to a fully automated zero-touch change management process. Schedule a Demo Why’s it hard to change network policies? Placing a sticky note on your firewall administrator’s desk or sending an email that gets lost in the clutter and expecting the change request to be performed pronto does not constitute a formal policy. Yet, shockingly, this is common. You need a formal change request process. Such a process dictates defined and documented steps about how to handle a change request, by whom, how it is addressed, defines an SLA, and more. Firewall change management requires detailed and concise steps that everyone understands and follows. Exceptions must be approved and documented so stakeholders can understand the risk. Your security policy management solution should seamlessly integrate with the tools you are already using to accelerate its adoption in your organization. AlgoSec enables business agility by integrating with ITSM systems like ServiceNow, BMC Helix ITSM (formerly Remedy), Clarity SM (formerly CA Service Management) and HP Service Management. Communication breakdown Network security and IT operations staff work in separate silos. Their goals, and even their languages, are different. Working in silos is a clear path to trouble. It is a major contributor to out-of-band changes that result in outages and security breaches. In many large companies, routine IT operational and administrative tasks may be handled by a team other than the one that handles security and risk. Although both teams have the same goal, decisions made by one team lead to problems for the other. Network complexity is a security killer Today’s networks exist across complex environments – on-premise data centers, multiple multi-vendor public and private clouds, spanning geographic borders. It’s difficult to keep track of your entire network estate. Security expert Bruce Schneider once stated that “Complexity is the worst enemy of security.” The sheer complexity of any given network can lead to a lot of mistakes. Simplifying and automating the firewall environment and management processes is necessary. Did you know? Up to 30 percent of implemented rule changes in large firewall infrastructures are unnecessary because the firewalls already allow the requested traffic! Under time pressure, firewall administrators often create rules that turn out to be redundant. This wastes valuable time and makes the firewalls even harder to manage. Get a Demo Schedule a Demo Mind the security gap Introducing new things open up security gaps. New hires, software patches, upgrades, server migrations, and network updates increase your exposure to risk. Who can keep track of it all? What about unexpected, quick fixes that enable access to certain resources or capabilities? A fix is made in a rush (after all, who wants a C-level exec breathing down their neck because he wants to access resources RIGHT NOW?) without sufficient consideration of whether that change is allowed under current security policies. Problems abound when speed is mistaken for agility and takes precedence over security. You need to be able to make changes fast and accurately – agility without compromising security. How can you get both agility and security? Network automation. There are solutions that automate firewall management tasks and record them so that they are part of the change management plan. Network automation helps bridge the gap between change management processes and reality. A sophisticated firewall and topology-aware system that identifies redundant change requests increases productivity. IT and security teams are responsible for making sure that systems function properly. However, they approach business continuity from different perspectives. The security department’s goal is to protect the business and its data, while the IT operations team focuses on keeping systems up and running. The business has to keep running AND it has to be secure. Alignment is easier said than done. To achieve alignment, organizations must reexamine IT and security processes. Let’s take a look at some examples of what happens when there is no alignment. Schedule a Demo Good changes gone bad Example 1 A classic lack of communication between IT operations and security groups put Corporation XYZ at risk. An IT department administrator, trying to be helpful, took the initiative to set up (with no security involvement or documentation) a file share for a user who needed to upload files in a hurry. By making this off-the-cuff change, the IT admin quickly addressed the client’s request. However, the account lingered unsecured. The security team noticed larger spikes of inbound traffic to the server from this account. Hackers abound. The site had been compromised and was being exploited. Example 2 A core provider of e-commerce services suffered a horrible fate due to a simple, but poorly managed, firewall change. One day, all e-commerce transactions in and out of its network ceased. The entire business was taken offline for several hours. The costs were astronomical. What happened? An out-of-band (and untested) change to a core firewall broke communications between the e-commerce application and the internet. Business activity ground to a halt. Because of this incident, executive management got involved and the responsible IT staff members were reprimanded. Hundreds of thousands of dollars later, the root cause of the outage was uncovered: IT staff chose not to test their firewall changes, bypassing their “burdensome” ITIL-based change management procedures. They failed to consider the consequences. Schedule a Demo Avoiding a firewall fire drill Automation is the key to gaining control. It helps staff disengage from firefighting. It bridges between agility and security to drive business-driven productivity. The right automation solution automates manual, error-prone workflows. It allows changes to be made accurately, with clear visibility across complex network topologies, while focusing on keeping the business running effectively. Automation helps teams track down potential traffic or connectivity issues and highlights risky areas. It can automatically pinpoint devices that require changes and show how to create and implement the changes. To ensure proper balance between business continuity and security, look for a firewall policy management solution that: Provides visibility of network traffic flows and network devices across complex, hybrid and multi-cloud network topologies Intelligently designs firewall rules to eliminate redundant rules and reduce clutter and complexity. Eliminates mistakes and rework. Improves accountability for change requests. Proactively assesses the impact of network changes to ensure security and continuous compliance. Identifies risky security policy rules and offers suggestions to de-risk your network environment Automatically pushes changes to devices Schedule a Demo 10 steps to automate and standardize the firewall change-management process Once a request is made, a change-request process should include these steps: Clarify the change request and determine the dependencies. Obtain all relevant information (i.e., who is requesting the change and why). Validate that the change is necessary. Many requests are unnecessary and already covered by existing rules. Get proper authorization for the change. Make sure you understand the dependencies and the impact on business applications, and other devices and systems. This usually involves multiple stakeholders from different teams. Perform a risk assessment. Before approving the change, thoroughly test it and analyze the results so as not to block desired traffic or violate compliance. Does the proposed change create a new risk in the security policy? Plan the change. Assign resources, create and test your back-out plans, and schedule the change. This is also a good time to ensure that everything is properly documented for troubleshooting or recertification purposes. Execute the change. Backup existing configurations, prepare target device(s) and notify appropriate workgroups of any planned outage, and then perform the actual change. Verify correct execution to avoid outages. Test the change, including affected systems and network traffic patterns. Audit and govern the change process. Review the executed change and any lessons learned. Having a non-operations-related group conduct the audit provides the necessary separation of duties and ensures a documented audit trail for every change. Measure SLAs. Establish new performance metrics and obtain a baseline measurement. Recertify policies. Part of your change management process should include a review and recertification of policies at a regular, defined interval (e.g., once a year). This step forces you to review why policies are in place, enabling you to improve documentation and remove or tweak policy rules. Schedule a Demo What to look for in a change-management solution Your solution must be firewall- and network-aware. This allows the system to pull information from the firewalls and understand the current policies. Your solution must support the firewalls, routers, security controls, load balancers, and other devices across your hybrid network. Your solution must be topology-aware. It must understand how the network is laid out, comprehend how the devices fit and interact, and provide the necessary visibility of how traffic is flowing through the network. Your solution must integrate with the existing general change management systems. You don’t want to undergo massive retraining of processes and systems simply because you have introduced a new solution. Your solution must provide out-of-the-box change workflows to streamline change-management processes and be highly customizable. No two organizations’ network and change processes are exactly the same. Schedule a Demo Summary While change management is complex stuff, the decision for your business is simple. You can continue to slowly chug along with manual change management processes or you can accelerate those processes with an automated network change management workflow solution that aligns stakeholders and helps your business run more smoothly. Think of your change process as a key component of the engine of an expensive car (in this case, your organization). Would you drive your car at high speed if you didn’t have tested, dependable brakes or a steering wheel? Hopefully, the answer is no! The brakes and steering wheel are analogous to change controls and processes. Rather than slowing you down, they actually make you go faster, securely! “Accelerate your business with security policy change automation” Power steering and power brakes (in this case firewall-aware integration and automation) help you zoom to success. Schedule a Demo About AlgoSec AlgoSec enables the world’s largest organizations to align business and security strategies, and manage their network security based on what matters most — the applications that power their businesses. Through a single pane of glass, the AlgoSec Security Management Solution provides holistic, business-level visibility across the entire network security infrastructure, including business applications and their connectivity flows — in the cloud and across SDN and on-premise networks. With AlgoSec users can auto-discover and migrate application connectivity, proactively analyze risk from the business perspective, tie cyber-attacks to business processes and intelligently automate time-consuming security changes— all zero-touch, and seamlessly orchestrated across any heterogeneous environment. Over 1,800 leading organizations, including 20 Fortune 50 companies, have relied on AlgoSec to drive business agility, security and compliance. AlgoSec has provided the industry’s only money-back guarantee since 2005. Did you know? AlgoSec integrates with your existing business processes and multi-vendor security controls to keep your business safe and agile nomatter where your network resides. Let's start your journey to our business-centric network security. Schedule a Demo Select a size Overview Cure the network management headache Why’s it hard to change network policies? Mind the security gap Good changes gone bad Avoiding a firewall fire drill 10 steps to automate and standardize the firewall change-management process What to look for in a change-management solution Summary About AlgoSec Get the latest insights from the experts Choose a better way to manage your network
- AlgoSec | Can Firewalls Be Hacked? Yes, Here’s 6 Vulnerabilities
Can Firewalls Be Hacked? Yes, Here’s 6 Vulnerabilities Like all security tools, firewalls can be hacked. That’s what happened to the... Cyber Attacks & Incident Response Can Firewalls Be Hacked? Yes, Here’s 6 Vulnerabilities Tsippi Dach 2 min read Tsippi Dach Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 12/20/23 Published Can Firewalls Be Hacked? Yes, Here’s 6 Vulnerabilities Like all security tools, firewalls can be hacked. That’s what happened to the social media platform X in January 2023, when it was still Twitter. Hackers exploited an API vulnerability that had been exposed since June the previous year. This gave them access to the platform’s security system and allowed them to leak sensitive information on millions of users. This breach occurred because the organization’s firewalls were not configured to examine API traffic with enough scrutiny. This failure in firewall protection led to the leak of more than 200 million names, email addresses, and usernames, along with other information, putting victims at risk of identity theft . Firewalls are your organization’s first line of defense against malware and data breaches. They inspect all traffic traveling into and out of your network, looking for signs of cyber attacks and blocking malicious activity when they find it. This makes them an important part of every organization’s cybersecurity strategy. Effective firewall management and configuration is vital for preventing cybercrime. Read on to find out how you can protect your organization from attacks that exploit firewall vulnerabilities you may not be aware of. Understanding the 4 Types of Firewalls The first thing every executive and IT leader should know is that there are four basic types of firewalls . Each category offers a different level of protection, with simpler solutions costing less than more advanced ones. Most organizations need to use some combination of these four firewall types to protect sensitive data effectively. Keep in mind that buying more advanced firewalls is not always the answer. Optimal firewall management usually means deploying the right type of firewall for its particular use case. Ideally, these should be implemented alongside multi-layered network security solutions that include network detection and response, endpoint security, and security information and event management (SIEM) technology. 1. Packet Filtering Firewalls These are the oldest and most basic types of firewalls. They operate at the network layer, checking individual data packets for their source IP address and destination IP. They also verify the connection protocol, as well as the source port and destination port against predefined rules. The firewall drops packets that fail to meet these standards, protecting the network from potentially harmful threats. Packet filtering firewalls are among the fastest and cheapest types of firewalls available. Since they can not inspect the contents of data packets, they offer minimal functionality. They also can’t keep track of established connections or enforce rules that rely on knowledge of network connection states. This is why they are considered stateless firewalls. 2. Stateful Inspection Firewalls These firewalls also perform packet inspection, but they ingest more information about the traffic they inspect and compare that information against a list of established connections and network states. Stateful inspection firewalls work by creating a table that contains the IP and port data for traffic sources and destinations, and dynamically check whether data packets are part of a verified active connection. This approach allows stateful inspection firewalls to deny data packets that do not belong to a verified connection. However, the process of checking data packets against the state table consumes system resources and slows down traffic. This makes stateful inspection firewalls vulnerable to Distributed Denial-of-Service (DDoS) attacks. 3. Application Layer Gateways These firewalls operate at the application layer, inspecting and managing traffic based on specific applications or protocols, providing deep packet inspection and content filtering. They are also known as proxy firewalls because they can be implemented at the application layer through a proxy device. In practice, this means that an external client trying to access your system has to send a request to the proxy firewall first. The firewall verifies the authenticity of the request and forwards it to an internal server. They can also work the other way around, providing internal users with access to external resources (like public web pages) without exposing the identity or location of the internal device used. 4. Next-Generation Firewalls (NGFW) Next-generation firewalls combine traditional firewall functions with advanced features such as intrusion prevention, antivirus, and application awareness . They contextualize data packet flows and enrich them with additional data, providing comprehensive security against a wide range of threats. Instead of relying exclusively on IP addresses and port information, NGFWs can perform identity-based monitoring of individual users, applications, and assets. For example, a properly configured NGFW can follow a single user’s network traffic across multiple devices and operating systems, providing an activity timeline even if the user switches between a desktop computer running Microsoft Windows and an Amazon AWS instance controlling routers and iOT devices. How Do These Firewalls Function? Each type of firewall has a unique set of functions that serve to improve the organization’s security posture and prevent hackers from carrying out malicious cyber attacks. Optimizing your firewall fleet means deploying the right type of solution for each particular use case throughout your network. Some of the most valuable functions that firewalls perform include: Traffic Control They regulate incoming and outgoing traffic, ensuring that only legitimate and authorized data flows through the network. This is especially helpful in cases where large volumes of automated traffic can slow down routine operations and disrupt operations. For example, many modern firewalls include rules designed to deny bot traffic. Some non-human traffic is harmless, like the search engine crawlers that determine your website’s ranking against certain keyword searches. However, the vast majority of bot traffic is either unnecessary or malicious. Firewalls can help you keep your infrastructure costs down by filtering out connection attempts from automated sources you don’t trust. Protection Against Cyber Threats Firewalls act as a shield against various cyber threats, including phishing attacks, malware and ransomware attacks . Since they are your first line of defense, any malicious activity that targets your organization will have to bypass your firewall first. Hackers know this, which is why they spend a great deal of time and effort finding ways to bypass firewall protection. They can do this by exploiting technical vulnerabilities in your firewall devices or by hiding their activities in legitimate traffic. For example, many firewalls do not inspect authenticated connections from trusted users. If cybercriminals learn your login credentials and use your authenticated account to conduct an attack, your firewalls may not notice the malicious activity at all. Network Segmentation By defining access rules, firewalls can segment networks into zones with varying levels of trust, limiting lateral movement for attackers. This effectively isolates cybercriminals into the zone they originally infiltrated, and increases the chance they make a mistake and reveal themselves trying to access additional assets throughout your network. Network segmentation is an important aspect of the Zero Trust framework. Firewalls can help reinforce the Zero Trust approach by inspecting traffic traveling between internal networks and dropping connections that fail to authenticate themselves. Security Policy Enforcement Firewalls enforce security policies, ensuring that organizations comply with their security standards and regulatory requirements. Security frameworks like NIST , ISO 27001/27002 , and CIS specify policies and controls that organizations need to implement in order to achieve compliance. Many of these frameworks stipulate firewall controls and features that require organizations to invest in optimizing their deployments. They also include foundational and organizational controls where firewalls play a supporting role, contributing to a stronger multi-layered cybersecurity strategy. Intrusion Detection and Prevention Advanced firewalls include intrusion detection and prevention capabilities, which can identify and block suspicious activities in real-time. This allows security teams to automate their response to some of the high-volume security events that would otherwise drag down performance . Automatically detecting and blocking known exploits frees IT staff to spend more time on high-impact strategic work that can boost the organization’s security posture. Logging and Reporting Firewalls generate logs and reports that assist in security analysis, incident response, and compliance reporting. These logs provide in-depth data on who accessed the organization’s IT assets, and when the connection occurred. They enable security teams to conduct forensic investigations into security incidents, driving security performance and generating valuable insights into the organization’s real-world security risk profile. Organizations that want to implement SIEM technology must also connect their firewall devices to the platform and configure them to send log data to their SIEM for centralized analysis. This gives security teams visibility into the entire organization’s attack surface and enables them to adopt a Zero Trust approach to managing log traffic. Common Vulnerabilities & Weaknesses Firewalls Share Firewalls are crucial for network security, but they are not immune to vulnerabilities. Common weaknesses most firewall solutions share include: Zero-day vulnerabilities These are vulnerabilities in firewall software or hardware that are unknown to the vendor or the general public. Attackers can exploit them before patches or updates are available, making zero-day attacks highly effective. Highly advanced NGFW solutions can protect against zero-day attacks by inspecting behavioral data and using AI-enriched analysis to detect unknown threats. Backdoors Backdoors are secret entry points left by developers or attackers within a firewall’s code. These hidden access points can be exploited to bypass security measures. Security teams must continuously verify their firewall configurations to identify the signs of backdoor attacks. Robust and effective change management solutions help prevent backdoors from remaining hidden. Header manipulation Attackers may manipulate packet headers to trick firewalls into allowing unauthorized traffic or obscuring their malicious intent. There are multiple ways to manipulate the “Host” header in HTTP traffic to execute attacks. Security teams need to configure their firewalls and servers to validate incoming HTTP traffic and limit exposure to header vulnerabilities. How Cyber Criminals Exploit These Vulnerabilities Unauthorized Access Exploiting a vulnerability can allow cybercriminals to penetrate a network firewall, gaining access to sensitive data, proprietary information, or critical systems. Once hackers gain unauthorized access to a network asset, only a well-segmented network operating on Zero Trust principles can reliably force them to reveal themselves. Otherwise, they will probably remain hidden until they launch an active attack. Data Breaches Once inside your network, attackers may exfiltrate sensitive information, including customer data, intellectual property, and financial records (like credit cards), leading to data breaches. These complex security incidents can lead to major business disruptions and reputational damage, as well as enormous recovery costs. Malware Distribution Attackers may use compromised firewalls to distribute malware, ransomware, or malicious payloads to other devices within the network. This type of attack may focus on exploiting your systems and network assets, or it may target networks adjacent to your own – like your third-party vendors, affiliate partners, or customers. Denial of Service (DDoS) Exploited firewalls can be used in DDoS attacks, potentially disrupting network services and rendering them unavailable to users. This leads to expensive downtime and reputational damage. Some hackers try to extort their victims directly, demanding organizations pay money to stop the attack. 6 Techniques Used to Bypass Firewalls 1. Malware and Payload Delivery Attackers use malicious software and payloads to exploit firewall vulnerabilities, allowing them to infiltrate networks or systems undetected. This often occurs due to unpatched security vulnerabilities in popular firewall operating systems. For example, in June 2023 Fortinet addressed a critical-severity FortiOS vulnerability with a security patch. One month later in July, there were still 300,000 Fortinet firewalls still using the unpatched operating system. 2. Phishing Attacks Phishing involves tricking individuals into divulging sensitive information or executing malicious actions. Attackers use deceptive emails or websites that may bypass firewall filters. If they gain access to privileged user account credentials, they may be able to bypass firewall policies entirely, or even reconfigure firewalls themselves. 3. Social Engineering Tactics Cybercriminals manipulate human psychology to deceive individuals into disclosing confidential information, effectively bypassing technical security measures like firewalls. This is typically done through social media, email, or by telephone. Attackers may impersonate authority figures both inside and outside the organization and demand access to sensitive assets without going through the appropriate security checks. 4. Deep Packet Inspection Evasion Attackers employ techniques to disguise malicious traffic, making it appear benign to firewalls using deep packet inspection, allowing it to pass through undetected. Some open-source tools like SymTCP can achieve this by running symbolic executions on the server’s TCP implementation, scanning the resulting execution paths, and sending malicious data through any handling discrepancies identified. 5. VPNs and Remote Access Attackers may use Virtual Private Networks (VPNs) and remote access methods to circumvent firewall restrictions and gain unauthorized entry into networks. This is particularly easy in cases where simple geo restrictions block traffic from IP addresses associated with certain countries or regions. Attackers may also use more sophisticated versions of this technique to access exposed services that don’t require authentication, like certain containerized servers . 6. Intrusion Prevention Systems (IPS) Bypass Sophisticated attackers attempt to evade IPS systems by crafting traffic patterns or attacks that go undetected, enabling them to compromise network security. For example, they may use technologies to decode remote access tool executable files hidden inside certificate files, allowing them to reassemble the malicious file after it passes through the IPS. Protecting Against Firewall Vulnerabilities Multi-factor Authentication (MFA) MFA adds an extra layer of security by requiring users to provide multiple forms of identification, such as a password and a one-time code sent to their mobile device, before they gain access. This prevents attackers from accessing sensitive network assets immediately after stealing privileged login credentials. Knowing an account holder’s password and username is not enough. Two-factor Authentication (2FA) 2FA is a subset of MFA that involves using two authentication factors, typically something the user knows (password) and something the user has (a mobile device or security token), to verify identity and enhance firewall security. Other versions use biometrics like fingerprint scanning to authenticate the user. Intrusion Prevention Systems (IPS) IPS solutions work alongside firewalls to actively monitor network traffic for suspicious activity and known attack patterns, helping to block or mitigate threats before they can breach the network. These systems significantly reduce the amount of manual effort that goes into detecting and blocking known malicious attack techniques. Web Application Firewalls (WAF) WAFs are specialized firewalls designed to protect web applications from a wide range of threats, including SQL injection, cross-site scripting (XSS), and other web-based attacks. Since these firewalls focus specifically on HTTP traffic, they are a type of application level gateway designed specifically for web applications that interact with users on the public internet. Antivirus Software and Anti-malware Tools Deploying up-to-date antivirus and anti-malware software on endpoints, servers, and Wi-Fi network routers helps detect and remove malicious software, reducing the risk of firewall compromise. In order to work effectively, these tools must be configured to detect and mitigate the latest threats alongside the organization’s other security tools and firewalls. Automated solutions can help terminate unauthorized processes before attackers get a chance to deliver malicious payloads. Regular Updates and Patch Management Keeping firewalls and all associated software up-to-date with the latest security patches and firmware updates is essential for addressing known vulnerabilities and ensuring optimal security. Security teams should know when configuration changes are taking place, and be equipped to respond quickly when unauthorized changes take place. Implementing a comprehensive visibility and change management platform like AlgoSec makes this possible. With AlgoSec, you can simulate the effects of network configuration changes and proactively defend against sophisticated threats before attackers have a chance to strike. Monitoring Network Traffic for Anomalies Continuous monitoring of network traffic helps identify unusual patterns or behaviors that may indicate a security incident. Anomalies can trigger alerts for further investigation and response. Network detection and response solutions grant visibility into network activities that would otherwise go unnoticed, potentially giving security personnel early warning when unannounced changes or suspicious behaviors take place. Streamline Your Firewall Security With AlgoSec Organizations continue to face increasingly sophisticated cyber threats, including attacks that capitalize on misconfigured firewalls – or manipulate firewall configurations directly. Firewall management software has become a valuable tool for maintaining a robust network security posture and ensuring regulatory compliance. AlgoSec plays a vital role enhancing firewall security by automating policy analysis, optimizing rule sets, streamlining change management, and providing real-time monitoring and visibility. Find out how to make the most of your firewall deployment and detect unauthorized changes to firewall configurations with our help. Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call
- Optimize your Juniper Investment with Intelligent Network Security Automation | AlgoSec
Webinars Optimize your Juniper Investment with Intelligent Network Security Automation Are you maximizing all the capabilities that your Juniper solutions offer? Expand its potential and maximize your ROI. Discover how to secure your homogeneous and multi-vendor network with intelligent automation. In this webinar, Max Shirshov, EMEA Solutions Architect at AlgoSec, will demonstrate how to assess risk and audit the firewall estate for regulatory compliance, address security breaches caused by misconfigured network devices, and provide fast and efficient change management utilizing the AlgoSec Security Management solution for your Juniper devices. Join the webinar to learn how to: Gain complete visibility into your Juniper-estate as well as multi-vendor and hybrid networks Intelligently push security policy changes to your Netscreen and SRX firewalls, MX routers and Juniper Space, as well as other vendors’ security devices, SDN and public clouds Automate application and user aware security policy management and ensure your Juniper devices are properly configured Assess risk and ensure regulatory compliance across your entire enterprise environment March 24, 2020 Max Shirshov Relevant resources AlgoSec & Juniper Networks Keep Reading The Juniper Networks Vulnerability Does Not Change Network Security Fundamentals Keep Reading Choose a better way to manage your network Choose a better way to manage your network Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Continue
- AlgoSec | Intrinsic Transformation: VMware NSX-T and AlgoSec Go Beyond Virtualization
Jeremiah Cornelius, Technical Leader for Alliances and Partners at AlgoSec, explores the security capability native to VMware’s approach... Digital Transformation Intrinsic Transformation: VMware NSX-T and AlgoSec Go Beyond Virtualization Jeremiah Cornelius 2 min read Jeremiah Cornelius Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 7/8/21 Published Jeremiah Cornelius, Technical Leader for Alliances and Partners at AlgoSec, explores the security capability native to VMware’s approach for virtual networking with NSX-T. Intrinsic transformation NSX-T culminates VMware’s decade of development of these technologies, that better align than ever before with AlgoSec’s approach for software automation of micro-segmentation and compliant security operations management. It is the latest iteration of VMware’s approach to networking and security, derived from many years as a platform for operating virtual machines, and managing these as hosted “vApp” workloads. If you’re familiar with the main players in Software Defined Networking, then you may remember that NSX-T shares its origin in the same student research at Stanford University, which also gave rise to several other competing SDN offerings. One thing that differentiated VMware from other players was their strong focus on virtualization over traditional network equipment stacks. This meant in some cases, network connections, data-packets, forwarding, and endpoints all existing in software and no “copper wire” existing anywhere! Knowing about this difference is more than a bit of trivia — it explains how the NSX family was designed with security features built into the architecture, having native capability for software security controls such as firewall segmentation and packet inspection. Described by VMware as “Intrinsic Security,” these are NSX capabilities that first drove the widespread acceptance of practical micro-segmentation in the data center. Since that first introduction of NSX micro-segmentation, a transformation occurred in customer demands, which required an expansion of VMware’s universe to horizons beyond their hypervisor and virtual machines. As a key enabler for this expansion, NSX-T has emerged as a networking and security technology that extends from serverless micro-services and container frameworks to VMs hosted on many cloud architectures located in physical data centers or as tenants in public clouds. The current iteration is called the NSX-T Service-Defined Firewall, which controls access to applications and services along with business-focused policies. Leaders in our segments If you’ve followed this far along, then maybe you’ve recognized several common themes between AlgoSec’s Security Management Suite and VMware’s NSX-T. Among these are security operations management as software configuration, modeling connectivity on business uses versus technology conventions, and transforming security into an enabling function. It’s not a surprise then, to know that our companies are technology partners. In fact, we began our alliance with VMware back in 2015 as the uptake in NSX micro-segmentation began to reveal an increased need for visibility, planning, automation, and reporting — along with requirements for extending policy from NSX objects to attached physical security devices from a variety of vendors. The sophistication and flexibility of NSX enforcement capability were excellently matched by the AlgoSec strengths in identifying risk and maintaining compliance while sustaining a change management record of configurations from our combined workflow automation. Strength to strength Up until now, this is a rosy picture painted, with an emphasis on the upsides of the AlgoSec partnership with VMware NSX-T. In the real world, we find that many of our applications are not-so-well understood as to be ready for micro-segmentation. More often, the teams responsible for the availability and security of these applications are detached from the business intent and value, further making it difficult to assess and therefore address risks. The line between traditional-style infrastructure and modern services isn’t always as clearly defined, either — making the advantages possible by migration and transformation difficult to determine and potentially introducing their own risks. It is in these environments, with multiple technologies, different stakeholders, and operation teams with different scopes, that AlgoSec solves hard problems with better automation tools. Taking advantage of NSX-T means first being faced with multiple deployment types, including public and private clouds as well as on-prem infrastructure, multiple security vendors, unclear existing network flows, and missing associations between business applications and their existing controls. These are visibility issues that AlgoSec resolves by automating the discovery and mapping of business applications , including associated policies across different technologies, and producing visual, graphic analysis that includes risk assessment and impact of changes. This capability for full visibility leads directly to addressing the open issues for risk and compliance. After all, if these present challenges in discovering and identifying risk using existing technology solutions, then there’s a big gap to close on the way to transforming these. Since AlgoSec has addressed the visibility across these, identifying risk becomes uniform and manageable. AlgoSec can lower transformation risk with NSX-T while ensuring that risk and compliance management are maintained on an ongoing basis. Workflow for risk mitigation by NSX-T intrinsic security can be driven by AlgoSec policy automation, without recourse to multiple tools when these mitigations need to cross boundaries to third-party firewalls or cloud security controls. With this integrated policy automation, what were once point-in-time configurations can be enabled for discovery-based updates for internal standards and changes to regulatory mandates. The result of AlgoSec pairing with VMWare NSX-T is a simplified overall security architecture — one that more rapidly responds to emerging risk and requests for changes, accelerates the speed of operations while more closely aligning with business, and ensures both compliant configurations and compliant lifecycle operations. VMware NSX? Ask AlgoSec The AlgoSec integration with VMware NSX-T builds on our years of collaboration with earlier versions of the NSX platform, with a track record of solving the more difficult configuration management problems for leaders of principal industries around the globe. If you want to discover more about what AlgoSec does to enable and enrich our alliance solution with VMware , contact us! AlgoSec works directly with VMware and your trusted technology delivery partners, and we’re glad to share more with you. Schedule a personal demo to see how AlgoSec makes your transformation to VMware Intrinsic Security possible now. Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call
- AlgoSec | What is a Cloud-Native Application Protection Platform (CNAPP)
Cloud environments are complex and dynamic. Due to the complexity and multifacetedness of cloud technologies, cloud-native applications... Cloud Security What is a Cloud-Native Application Protection Platform (CNAPP) Ava Chawla 2 min read Ava Chawla Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 11/24/22 Published Cloud environments are complex and dynamic. Due to the complexity and multifacetedness of cloud technologies, cloud-native applications are challenging to safeguard. As a result, security teams use multiple security solutions, like CWPP and CSPM, to protect applications. The problem with this approach is that handling multiple security tools is laborious, time-consuming, and inefficient. Cloud-native application protection platform (CNAPP) is a new cloud security solution that promises to solve this problem. What is CNAPP? A cloud-native application protection platform (CNAPP) is an all-in-one tool with the capabilities of different cloud-native security tools. It combines the security features of multiple tools and provides comprehensive protection – from the development and configuration stages to deployment and runtime. Container security is here to stay A CNAPP combines CSPM, CIEM, IAM, CWPP, and more in one tool. It streamlines cloud security monitoring, threat detection, and remediation processes. The all-in-one platform gives organizations better visibility into threats and vulnerabilities. Instead of using multiple tools to receive alerts and formulate a remediation plan, a CNAPP minimizes complexity and enables security teams to monitor and draw insights from a single platform. How Does CNAPP Work and Why is it So Important to Have? This new cloud security approach offers the capabilities of multiple security tools in one software. Some of these security functions include Cloud Security Posture Management (CSPM), Infrastructure-as-Code (IaC) Scanning, Cloud Workload Protection Platform (CWPP), Cloud Network Security Connectivity (CNSC), and Kubernetes Security Posture Management (CIEM). The all-in-one platform centralizes insights, enabling security professionals to monitor and analyze data from the same space. A CNAPP identifies risks with strong context, provides detailed alerts, and offers automation features to fix vulnerabilities and misconfigurations. A CNAPP is essential because it reduces complexity and minimizes overhead. Given how complex and dynamic the cloud environments are, organizations are faced with enormous security threats. Enterprises deploy applications on multiple private and public clouds leveraging various dynamic, mixed technologies. This makes securing cloud assets significantly challenging. To cope with the complexity, security operations teams rely on multiple cloud security solutions. SecOps use various solutions to protect modern development practices, such as containers, Kubernetes, serverless functions, CI/CD pipelines, and infrastructure as code (IaC). This approach has been helpful. That said, it’s laborious and inefficient. In addition to not providing a broad view of security risks, dealing with multiple tools negatively impacts accuracy and decreases productivity. Having to correlate data from several platforms leads to errors and delayed responses. A CNAPP takes care of these problems by combining the functionalities of multiple tools in one software. It protects every stage of the cloud application lifecycle, from development to runtime. Leveraging advanced analytics and remediation automation, CNAPPs help organizations address cloud-native risks, harden applications, and institute security best practices. What Problems Does a CNAPP Solve? This new category of cloud application security tool is revolutionizing the cybersecurity landscape. It solves major challenges DevSecOps have been dealing with. That said, a CNAPP helps security teams to solve the following problems. 1. Enhancing Visibility and Quantifying Risks A CNAPP offers a broader visibility of security risks. It leverages multiple security capabilities to enable DevOps and DevSecOps to spot and fix potential security issues throughout the entire application lifecycle. The all-in-one security platform enables teams to keep tabs on all cloud infrastructures ( like apps, APIs, and classified data) and cloud services (like AWS, Azure, and Google Cloud). In addition, it provides insights that help security teams to quantify risks and formulate data-driven remediation strategies. 2. Combined Cloud Security Solution A CNAPP eliminates the need to use multiple cloud-native application protection solutions. It provides all the features needed to detect and solve security issues. Scanning, detection, notification, and reporting are consolidated in one software. This reduces human error, shortens response time, and minimizes the cost of operation. 3. Secure Software Development It reinforces security at every stage of the application lifecycle. The tool helps DevOps teams to shift left, thus minimizing the incidence of vulnerabilities or security issues at runtime. 4. Team Collaboration Collaboration is difficult and error-prone when teams are using multiple tools. Data correlation and analysis take more time since team members have more than one tool to deal with. A CNAPP is a game-changer! It has advanced workflows, data correlation, analytics, and remediation features. These functionalities enhance team collaboration and increase productivity. What are CNAPP Features and Capabilities/Key Components of CNAPP? Even though the features and capabilities of CNAPPs differ (based on vendors), there are key components an effective CNAPP should have. That being said, here are the seven key components: Cloud Security Posture Management (CSPM) A CSPM solution focuses on maintaining proper cloud configuration. It monitors, detects, and fixes misconfigurations & compliance violations. CSPM monitors cloud resources and alerts security teams when a non-compliant resource is identified. Infrastructure-as-Code (IaC) Scanning IaC Scanning enables the early detection of errors (misconfigurations) in code. Spotting misconfigurations before deployment helps to avoid vulnerabilities at runtime. This tool is used to carry out some kind of code review. The purpose is to ensure code quality by scanning for vulnerable points, compliance issues, and violations of policies. Cloud Workload Protection Platform (CWPP) Cloud workload protection platform (CSPM) secures cloud workloads, shielding your resources from security threats. CSPM protects various workloads, from virtual machines (VMs) and databases to Kubernetes and containers. A CWPP monitors and provides insights to help security teams prevent security breaches. Cloud Network Security Connectivity (CNSC) Cloud Network Security Connectivity (CNSC) provides complete real-time visibility and access to risks across all your cloud resources and accounts. This cloud security solution allows you to explore the risks, activate security rules, and suppress whole risks or risk triggers, export risk trigger details, access all network rules in the context of their policy sets and create risk reports. Kubernetes Security Posture Management (KSPM) Kubernetes security posture management (KSPM) capability enables organizations to maintain standard security posture by preventing Kubernetes misconfigurations and compliance violations. KSPM solution, similar to Cloud Security Posture Management (CSPM), automates Kubernetes security, reinforces compliance, identifies misconfigurations, and monitors Kubernetes clusters to ensure maximum security. Cloud Infrastructure Entitlement Management (CIEM) A Cloud Infrastructure Entitlement Management (CIEM) tool is used to administer permissions and access policies. To maintain the integrity of cloud and multi-cloud environments, identities and access privileges must be regulated. This is where CIEM comes in! CIEM solutions, also known as Cloud permissions Management Solutions, help organizations prevent data breaches by enforcing the principle of least privileges. Integration to Software Development Activities This component of CNAPP focuses on integrating cloud-native application protection solutions into the development phase to improve reliability and robustness in the CI/CD pipeline stage. What are the Benefits of CNAPP? Transitioning from using multiple cloud security tools to implementing a CNAPP solution can benefit your company in many ways. Some benefits include: 1. Streamlines Security Operations Managing multiple security tools decreases efficiency and leads to employee burnout. Correlating data from different software is laborious and error-prone. It prolongs response time. A CNAPP streamlines activities by giving security teams broad visibility from a single tool. This makes monitoring and remediation easier than ever – making security teams more efficient and productive. 2. Better Visibility into Risks A CNAPP provides better visibility into security risks associated with your cloud infrastructure. It covers all aspects of cloud-native application protection, providing security teams with the necessary insights to close security gaps, harden applications, and ward off threats. 3. Improves Security With Automation Risk detection and vulnerability management are automated. Automation of security tasks increases reliability, reduces human error, and enables rapid response to threats. It combines automation and advanced analytics to offer organizations accurate insights into risks. 4. Reduces the Number of Bug Fixes A CNAPP prevents vulnerabilities at runtime by detecting threats and errors in the CI/CD pipeline phases. This approach improves DevOps team productivity and decreases the number of bug fixes after deployment. In other words, shifting left ensures the deployment of high-quality code. 5. Reduces Overhead Costs If you want to cut down the cost of operation, consider choosing a CNAPP over CSPM and other standalone cloud security tools. It reduces overhead by eliminating the need to operate and maintain multiple cloud security solutions. AlgoSec CNAPP with Prevasio and CloudFlow Cloud environments are increasingly complex and dynamic. Maintaining secure cloud infrastructures has become more challenging than ever. Security teams rely on multiple tools to gain visibility into risks. CNAPPs promise to fix the challenges of using multiple solutions to protect cloud-native applications. Gartner, the first to describe the CNAPP category, encourages organizations to consider emerging CNAPP providers and adopt an all-in-one security approach that takes care of the entire life cycle of applications – covering development and runtime protection. Prevasio makes transitioning to a CNAPP a fantastic experience. Prevasio takes pride in helping organizations protect their cloud-native applications and other cloud assets. Prevasio’s agentless cloud-native application protection platform (CNAPP) offers increased risk visibility and enables security teams to reinforce best practices. Contact us to learn how we can help you manage your cloud security. Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call
- AlgoSec | Network Security vs. Application Security: The Complete Guide
Enterprise cybersecurity must constantly evolve to meet the threat posed by new malware variants and increasingly sophisticated hacker... Uncategorized Network Security vs. Application Security: The Complete Guide Tsippi Dach 2 min read Tsippi Dach Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 1/25/24 Published Enterprise cybersecurity must constantly evolve to meet the threat posed by new malware variants and increasingly sophisticated hacker tactics, techniques, and procedures. This need drives the way security professionals categorize different technologies and approaches. The difference between network security and application security is an excellent example. These two components of the enterprise IT environment must be treated separately in any modern cybersecurity framework. This is because they operate on different levels of the network and they are exposed to different types of threats and security issues. To understand why, we need to cover what each category includes and how they contribute to an organization’s overall information security posture. IT leaders and professionals can use this information to their organization’s security posture, boost performance, and improve event outcomes. What is Network Security? Network security focuses on protecting assets located within the network perimeter. These assets include data, devices, systems, and other facilities that enable the organization to pursue its interests — just about anything that has value to the organization can be an asset. This security model worked well in the past, when organizations had a clearly defined network perimeter. Since the attack surface was well understood, security professionals could deploy firewalls, intrusion prevention systems, and secure web gateways directly at the point of connection between the internal network and the public internet. Since most users, devices and applications were located on-site, security leaders had visibility and control over the entire network. This started to change when organizations shifted to cloud computing and remote work, supported by increasingly powerful mobile devices. Now most organizations do not have a clear network perimeter, so the castle-and-moat approach to network security is no longer effective. However, the network security approach isn’t obsolete. It is simply undergoing a process of change, adjusting to smaller, more segmented networks governed by Zero Trust principles and influenced by developments in application security. Key Concepts of Network Security Network security traditionally adopts a castle-and-moat approach, where all security controls exist at the network perimeter. Users who attempt to access the network must authenticate and verify themselves before being allowed to enter. Once they enter, they can freely move between assets, applications, and systems without the need to re-authenticate themselves. In modern, cloud-enabled networks, the approach is less like a castle and more like a university campus. There may be multiple different subnetworks working together, with different security controls based on the value of the assets under protection. In these environments, network security is just one part of a larger, multi-layered security deployment. This approach focuses on protecting IT infrastructure, like routers, firewalls, and network traffic. Each of these components has a unique role to play securing assets inside the network: Firewalls act as filters for network traffic , deciding what traffic is allowed to pass through and denying the rest. Well-configured firewall deployments don’t just protect internal assets from incoming traffic, they also protect against data from leaking outside the network as well. Intrusion Prevention Systems (IPS) are security tools that continuously monitor the network for malicious activity and take action to block unauthorized processes. They may search for known threat signatures, monitor for abnormal network activity, or enforce custom security policies. Virtual Private Networks (VPNs) encrypt traffic between networks and hide users’ IP addresses from the public internet. This is useful for maintaining operational security in a complex network environment because it prevents threat actors from intercepting data in transit. Access control tools allow security leaders to manage who is authorized to access data and resources on the network. Secure access control policies determine which users have permission to access sensitive assets, and the conditions under which that access might be revoked. Why is Network Security Important? Network security tools protect organizations against cyberattacks that target their network infrastructure, and prevent hackers from conducting lateral movement. Many modern network security solutions focus on providing deep visibility into network traffic, so that security teams can identify threat actors who have successfully breached the network perimeter and gained unauthorized access. Network Security Technologies and Strategies Firewalls : These tools guard the perimeters of network infrastructure. Firewalls filter incoming and outgoing traffic to prevent malicious activity. They also play an important role in establishing boundaries between network zones, allowing security teams to carefully monitor users who move between different parts of the network. These devices must be continuously monitored and periodically reconfigured to meet the organization’s changing security needs. VPNs : Secure remote access and IP address confidentiality is an important part of network security. VPNs ensure users do not leak IP data outside the network when connecting to external sources. They also allow remote users to access sensitive assets inside the network even when using unsecured connections, like public Wi-Fi. Zero Trust Models : Access control and network security tools provide validation for network endpoints, including IoT and mobile devices. This allows security teams to re-authenticate network users even when they have already verified their identities and quickly disconnect users who fail these authentication checks. What is Application Security? Application security addresses security threats to public-facing applications, including APIs. These threats may include security misconfigurations, known vulnerabilities, and threat actor exploits. Since these network assets have public-facing connections, they are technically part of the network perimeter — but they do not typically share the same characteristics as traditional network perimeter assets. Unlike network security, application security extends to the development and engineering process that produces individual apps. It governs many of the workflows that developers use when writing code for business contexts. One of the challenges to web application security is the fact that there is no clear and universal definition for what counts as an application. Most user-interactive tools and systems count, especially ones that can process data automatically through API access. However, the broad range of possibilities leads to an enormous number of potential security vulnerabilities and exposures, all of which must be accounted for. Several frameworks and methods exist for achieving this: The OWASP Top Ten is a cybersecurity awareness document that gives developers a broad overview of the most common application vulnerabilities . Organizations that adopt the document give software engineers clear guidance on the kinds of security controls they need to build into the development lifecycle. The Common Weakness Enumeration (CWE) is a long list of software weaknesses known to lead to security issues. The CWE list is prioritized by severity, giving organizations a good starting point for improving application security. Common Vulnerabilities and Exposures (CVE) codes contain extensive information on publicly disclosed security vulnerabilities, including application vulnerabilities. Every vulnerability has its own unique CVE code, which gives developers and security professionals the ability to clearly distinguish them from one another. Key Concepts of Application Security The main focus of application security is maintaining secure environments inside applications and their use cases. It is especially concerned with the security vulnerabilities that arise when web applications are made available for public use. When public internet users can interact with a web application directly, the security risks associated with that application rise significantly. As a result, developers must adopt security best practices into their workflows early in the development process. The core elements of application security include: Source code security, which describes a framework for ensuring the security of the source code that powers web-connected applications. Code reviews and security approvals are a vital part of this process, ensuring that vulnerable code does not get released to the public. Securing the application development lifecycle by creating secure coding guidelines, providing developers with the appropriate resources and training, and creating remediation service-level agreements (SLAs) for application security violations. Web application firewalls, which operate separately from traditional firewalls and exclusively protect public-facing web applications and APIs. Web application firewalls monitor and filter traffic to and from a web source, protecting web applications from security threats wherever they happen to be located. Why is Application Security Important? Application security plays a major role ensuring the confidentiality, integrity, and availability of sensitive data processed by applications. Since public-facing applications often collect and process end-user data, they make easy targets for opportunistic hackers. At the same time, robust application security controls must exist within applications to address security vulnerabilities when they emerge and prevent data breaches. Application Security Technologies Web Application Firewalls. These firewalls provide protection specific to web applications, preventing attackers from conducting SQL injection, cross-site scripting, and denial-of-service attacks, among others. These technical attacks can lead to application instability and leak sensitive information to attackers. Application Security Testing. This important step includes penetration testing, vulnerability scanning, and the use of CWE frameworks. Pentesters and application security teams work together to ensure public-facing web applications and APIs hold up against emerging threats and increasingly sophisticated attacks. App Development Security. Organizations need to incorporate security measures into their application development processes. DevOps security best practices include creating modular, containerized applications uniquely secured against threats regardless of future changes to the IT environment or device operating systems. Integrating Network and Application Security Network and application security are not mutually exclusive areas of expertise. They are two distinct parts of your organization’s overall security posture. Identifying areas where they overlap and finding solutions to common problems will help you optimize your organization’s security capabilities through a unified security approach. Overlapping Areas Network and application security solutions protect distinct areas of the enterprise IT environment, but they do overlap in certain areas. Security leaders should be aware of the risk of over-implementation, or deploying redundant security solutions that do not efficiently improve security outcomes. Security Solutions : Both areas use security tools like intrusion prevention systems, authentication, and encryption. Network security solutions may treat web applications as network entry points, but many hosted web applications are located outside the network perimeter. This makes it difficult to integrate the same tools, policies, and controls uniformly across web application toolsets. Cybersecurity Strategy : Your strategy is an integral part of your organization’s security program, guiding your response to different security threats. Security architects must configure network and application security solutions to work together in use case scenarios where one can meaningfully contribute to the other’s operations. Unique Challenges Successful technology implementations of any kind come with challenges, and security implementations are no different. Both application and network security deployments will present issues that security leaders must be prepared to address. Application security challenges include: Maintaining usability. End users will not appreciate security implementations that make apps harder to use. Security teams need to pay close attention to how new features impact user interfaces and workflows. Detecting vulnerabilities in code. Ensuring all code is 100% free of vulnerabilities is rarely feasible. Instead, organizations need to adopt a proactive approach to detecting vulnerabilities in code and maintaining source code security. Managing source code versioning. Implementing DevSecOps processes can make it hard for organizations to keep track of continuously deployed security updates and integrations. This may require investing in additional toolsets and versioning capabilities. Network security challenges include: Addressing network infrastructure misconfigurations. Many network risks stem from misconfigured firewalls and other security tools. One of the main challenges in network security is proactively identifying these misconfigurations and resolving them before they lead to security incidents. Monitoring network traffic efficiently. Monitoring network traffic can make extensive use of limited resources, leading to performance issues or driving up network-related costs. Security leaders must find ways to gain insight into security issues without raising costs beyond what the organization can afford. Managing network-based security risks effectively. Translating network activity insights into incident response playbooks is not always easy. Simply knowing that unauthorized activity might be happening is not enough. Security teams must also be equipped to address those risks and mitigate potential damage. Integrating Network and Application Security for Unified Protection A robust security posture must contain elements of both network and application security. Public-facing applications must be able to filter out malicious traffic and resist technical attacks, and security teams need comprehensive visibility into network activity and detecting insider threats . This is especially important in cloud-enabled hybrid environments. If your organization uses cloud computing through a variety of public and private cloud vendors, you will need to extend network visibility throughout the hybrid network. Maintaining cloud security requires a combination of network and web application security capable of producing results in a cost-effective way. Highly automated security platforms can help organizations implement proactive security measures that reduce the need to hire specialist internal talent for every configuration and policy change. Enterprise-ready cloud security solutions leverage automation and machine learning to reduce operating costs and improve security performance across the board. Unify Network and Application Security with AlgoSec No organization can adequately protect itself from a wide range of cyber threats without investing in both network and application security. Technology continues to evolve and threat actors will adapt their tactics to exploit new vulnerabilities as they are discovered. Integrating network and application security into a single, unified approach gives security teams the ability to create security policies and incident response plans that address real-world threats more effectively. Network visibility and streamlined change management are vital to achieving this goal. AlgoSec is a security policy management and application connectivity platform that provides in-depth information on both aspects of your security posture. Find out how AlgoSec can help you centralize policy and change management in your network. Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call







