
By Sergei Shevchenko
December 15, 2020

Summary

As earlier reported1 by FireEye, the attackers have orchestrated a supply chain attack by trojanizing
SolarWinds Orion business software updates to distribute malware.

The attackers have leveraged multiple techniques to evade detection and to obscure their activity.

The initial aim of this research was to uncover their operation. During a detailed analysis and reverse
engineering of the trojanised SolarWinds Orion business software, Prevasio has uncovered a wide range
of public and private organizations around the world that may have fallen the victims of this attack.

Prevasio is the first company in the world that has fully reconstructed the list of victims of this attack.

Prevasio has decided to publish this list to raise the level of awareness of this attack, and to provide
administrators of the targeted companies with IOCs to help them to locate and to eradicate an infection
that may have potentially affected their corporate infrastructure.

SUNBURST Backdoor

At the time of writing, the malicious update SolarWinds-Core-v2019.4.5220-Hotfix5.msp is still
available for download.

The malicious component SolarWinds.Orion.Core.BusinessLayer.dll inside the MSP package
is a non-obfuscated .NET assembly. It can easily be reconstructed with a .NET disassembler, such as
ILSpy, and then fully reproduced in C# code, using Microsoft Visual Studio. Once reproduced, it can be
debugged to better understand how it works.

In a nutshell, the malicious DLL is a backdoor. It is loaded into the address space of the legitimate
SolarWinds Orion process SolarWinds.BusinessLayerHost.exe or
SolarWinds.BusinessLayerHostx64.exe.

The critical strings inside the backdoor’s class
SolarWinds.Orion.Core.BusinessLayer.OrionImprovementBusinessLayer are encoded with the
DeflateStream Class of the .NET’s System.IO.Compression library, coupled with the standard base64
encoder.

1 https://www.fireeye.com/blog/threat-research/2020/12/evasive-attacker-leverages-solarwinds-
supply-chain-compromises-with-sunburst-backdoor.html

Prevasio Pty Ltd | https://prevasio.io | Copyright © 2020 All Rights Reserved

Sunburst Backdoor
A deeper look into The SolarWinds’ Supply Chain Malware

Prevasio Pty Ltd | https://prevasio.io | Copyright © 2020 All Rights Reserved

Initialisation

Once loaded, the malware checks if its assembly file was created earlier than 12, 13, or 14 days ago. The
exact number of hours it checks is a random number from 288 to 336.

Next, it reads the application settings value ReportWatcherRetry. This value keeps the reporting status,
and may be set to one of the states:

• New (4)
• Truncate (3)
• Append (5)

When the malware runs the first time, its reporting status variable ReportWatcherRetry is set to New
(4).

The reporting status is an internal state that drives the logic. For example, if the reporting status is set
to Truncate, the malware will stop operating by first disabling its networking communications, and then
disabling other security tools and antivirus products.

In order to stay silent, the malware periodically falls asleep for a random period of time that varies be-
tween 30 minutes and 2 hours.

At the start, the malware obtains the computer’s domain name. If the domain name is empty, the mal-
ware quits.

It then generates a 8-byte User ID, which is derived from the system footprint. In particular, it is generat-
ed from MD5 hash of a string that consists from the 3 fields:

• the first or default operational (can transmit data packets) network interface’s physical address
• computer’s domain name
• UUID created by Windows during installation (machine’s unique ID)

Even though it looks random, the User ID stays permanent as long as networking configuration and the
Windows installation stay the same.

Domain Generation Algorithm (Part I)

The malware relies on its own CryptoHelper class to generate a domain name. This class is instantiated
from the 8-byte User ID and the computer’s domain name, encoded with a substitution table:
“rq3gsalt6u1iyfzop572d49bnx8cvmkewhj”.

For example, if the original domain name is “domain”, its encoded form will look like: “n2huov”.

To generate a new domain, the malware first attempts to resolve domain name “api.solarwinds.com”. If
it fails to resolve it, it quits.

The first part of the newly generated domain name is a random string, produced from
the 8-byte User ID, a random seed value, and encoded with a custom base64 alphabet
“ph2eifo3n5utg1j8d94qrvbmk0sal76c”.

Prevasio Pty Ltd | https://prevasio.io | Copyright © 2020 All Rights Reserved

Because it is generated from a random seed value, the first part of the newly generated domain name is
random.

For example, it may look like “fivu4vjamve5vfrt” or “k1sdhtslulgqoagy”.

To produce the domain name, this string is then appended with the earlier encoded domain name (such
as “n2huov”) and a random string, selected from the following list:

• .appsync-api.eu-west-1[.]avsvmcloud[.]com
• .appsync-api.us-west-2[.]avsvmcloud[.]com
• .appsync-api.us-east-1[.]avsvmcloud[.]com
• .appsync-api.us-east-2[.]avsvmcloud[.]com

For example, the final domain name may look like:

 fivu4vjamve5vfrtn2huov[.]appsync-api.us-west-2[.]avsvmcloud[.]com

or

 k1sdhtslulgqoagyn2huov[.]appsync-api.us-east-1[.]avsvmcloud[.]com

Next, the domain name is resolved to an IP address, or to a list of IP addresses. For example, it may
resolve to 20.140.0.1.

The resolved domain name will be returned into IPAddress structure that will contain an
AddressFamily1 field - a special field that specifies the addressing scheme.

If the host name returned in the IPAddress structure is different to the queried domain name, the
returned host name will be used as a C2 host name for the backdoor.

Otherwise, the malware will check if the resolved IP address matches one of the patterns below, in order
to return an ‘address family’:

1 https://docs.microsoft.com/en-us/dotnet/api/system.net.sockets.addressfamily?view=net-5.0

IP Address Subnet Mask ‘Address Family’
20.140.0.0 255.254.0.0 ImpLink
96.31.172.0 255.255.255.0 ImpLink
131.228.12.0 255.255.252.0 ImpLink
144.86.226.0 255.255.255.0 ImpLink
8.18.144.0 255.255.254.0 NetBios
18.130.0.0 255.255.0.0 NetBios
71.152.53.0 255.255.255.0 NetBios
99.79.0.0 255.255.0.0 NetBios
87.238.80.0 255.255.248.0 NetBios
199.201.117.0 255.255.255.0 NetBios
184.72.0.0 255.254.0.0 NetBios

IP Address Subnet Mask ‘Address Family’
10.0.0.0 255.0.0.0 Atm
172.16.0.0 255.240.0.0 Atm
192.168.0.0 255.255.0.0 Atm
224.0.0.0 240.0.0.0 Atm
fc00:: fe00:: Atm
fec0:: ffc0:: Atm
ff00:: ff00:: Atm
41.84.159.0 255.255.255.0 Ipx
74.114.24.0 255.255.248.0 Ipx
154.118.140.0 255.255.255.0 Ipx
217.163.7.0 255.255.255.0 Ipx

Prevasio Pty Ltd | https://prevasio.io | Copyright © 2020 All Rights Reserved

For example, if the queried domain resolves to 20.140.0.1, it will match the entry in the table
20.140.0.0, for which the returned ‘address family’ will be ImpLink.

The returned ‘address family’ invokes an additional logic in the malware.

Disabling Security Tools and Antivirus Products

If the returned ‘address family’ is ImpLink or Atm, the malware will enumerate all processes and for each
process, it will check if its name matches one of the pre-defined hashes.

Next, it repeats this processed for services and for the drivers installed in the system. If a process name
or a full path of an installed driver matches one of the pre-defined hashes, the malware will disable it.

For hashing, the malware relies on Fowler–Noll–Vo1 algorithm.

For example, the core process of Windows Defender is MsMpEng.exe. The hash value of “MsMpEng”
string is 5183687599225757871. This value is specifically enlisted the malware’s source under a variable
name timeStamps:

 timeStamps = new ulong[1]
 {
 5183687599225757871uL
 }

The service name of Windows Defender is windefend - the hash of this string (917638920165491138)
is also present2 in the malware body. As a result, the malicioius DLL will attempt to stop the Windows
Defender service.

In order to disable various security tools and antivirus products, the malware first grants
itself SeRestorePrivilege and SeTakeOwnershipPrivilege privileges, using the native
AdjustTokenPrivileges() API. With these privileges enabled, the malware takes ownership of the
service registry keys it intends to manipulate.

The new owner of the keys is first attempted to be explicitly set to Administrator account. If such
account is not present, the malware enumerates all user accounts, looking for a SID that represents the
administrator account.

The malware uses Windows Management Instrumentation query “Select * From Win32_UserAccount”
to obtain the list of all users. For each enumerated user, it makes sure the account is local and then,
when it obtains its SID, it makes sure the SID begins with S-1-5- and ends with -500 in order to locate3
the local administrator account.

Once such account is found, it is used as a new owner for the registry keys, responsible for manipulation
of the services of various security tools and antivirus products.

1 https://en.wikipedia.org/wiki/Fowler%E2%80%93Noll%E2%80%93Vo_hash_function
2 https://github.com/fireeye/sunburst_countermeasures/blob/main/fnv1a_xor_hashes.txt
3 https://devblogs.microsoft.com/scripting/how-can-i-determine-if-the-local-administrator-
account-has-been-renamed-on-a-computer/

Prevasio Pty Ltd | https://prevasio.io | Copyright © 2020 All Rights Reserved

With the new ownership set, the malware then disables1 these services by setting their Start value to 4
(Disabled):

 registryKey2.SetValue(“Start”), 4, RegistryValueKind.DWord);

HTTP Backdoor

If the returned ‘address family’ for the resolved domain name is NetBios, as specified in the lookup table
above, the malware will initialise its HttpHelper class, which implements an HTTP backdoor.

The backdoor commands are covered in the FireEye write-up, so let’s check only a couple of commands
to see what output they produce.

One of the backdoor commands is CollectSystemDescription. As its name suggests, it collects system
information. By running the code reconstructed from the malware, here is an actual example of the
data collected by the backdoor and delivered to the attacker’s C2 with a separate backdoor command
UploadSystemDescription:

 1. %DOMAIN_NAME%
 2. S-1-5-21-298510922-2159258926-905146427
 3. DESKTOP-VL39FPO
 4. UserName
 5. [E] Microsoft Windows NT 6.2.9200.0 6.2.9200.0 64
 6. C:\WINDOWS\system32
 7. 0
 8. %PROXY_SERVER%

 Description: Killer Wireless-n/a/ac 1535 Wireless Network Adapter #2
 MACAddress: 9C:B6:D0:F6:FF:5D
 DHCPEnabled: True
 DHCPServer: 192.168.20.1
 DNSHostName: DESKTOP-VL39FPO
 DNSDomainSuffixSearchOrder: Home
 DNSServerSearchOrder: 8.8.8.8, 192.168.20.1
 IPAddress: 192.168.20.30, fe80::8412:d7a8:57b9:5886
 IPSubnet: 255.255.255.0, 64
 DefaultIPGateway: 192.168.20.1, fe80::1af1:45ff:feec:a8eb

NOTE: Field #7 specifies the number of days (0) since the last system reboot.

GetProcessByDescription command will build a list of processes running on a system. This command
accepts an optional argument, which is one of the custom process properties enlisted here2.

If the optional argument is not specified, the backdoor builds a process list that looks like:

1 http://smallvoid.com/article/winnt-services-regedit.html
2 https://weblogs.asp.net/dixin/query-operating-system-processes-in-c

Prevasio Pty Ltd | https://prevasio.io | Copyright © 2020 All Rights Reserved

 [1720] svchost
 [8184] chrome

 [4732] svchost

If the optional argument is specified, the backdoor builds a process list that includes the specified
process property in addition to parent process ID, username and domain for the process owner.

For example, if the optional argument is specified as “ExecutablePath”, the GetProcessByDescription
command may return a list similar to:

 [3656] sihost.exe C:\WINDOWS\system32\sihost.exe 1720 DESKTOP-VL39FPO\UserName
 [3824] svchost.exe C:\WINDOWS\system32\svchost.exe 992 DESKTOP-VL39FPO\UserName
 [9428] chrome.exe C:\Program Files (x86)\Google\Chrome\Application\chrome.exe 4600

 DESKTOP-VL39FPO\UserName

Other backdoor commands enable deployment of the 2nd stage malware. For example, the WriteFile
command will save the file:

 using (FileStream fileStream = new FileStream(path, FileMode.Append, FileAccess.Write))
 {
 fileStream.Write(array, 0, array.Length);
 }

The downloaded 2nd stage malware can then the executed with RunTask command:

 using (Process process = new Process())
 {
 process.StartInfo = new ProcessStartInfo(fileName, arguments)
 {
 CreateNoWindow = false,
 UseShellExecute = false
 };
 if (process.Start())
 ...

Alternatively, it can be configured to be executed with the system restart, using registry manipulation
commands, such as SetRegistryValue.

Domain Generation Algorithm (Part II)

As described in the first part of our analysis, the DGA (Domain Generation Algorithm) of the Sunburst
backdoor produces a domain name that may look like:

 fivu4vjamve5vfrtn2huov[.]appsync-api.us-west-2[.]avsvmcloud[.]com

The first part of the domain name (before the first dot) consists of a 16-character random string,
appended with an encoded computer’s domain name. This is the domain1 in which the local computer is
registered.

From the example string above, we can conclude that the encoded computer’s domain starts from the
17th character and up until the dot (highlighted in yellow):

 fivu4vjamve5vfrtn2huov

In order to encode a local computer’s domain name, the malware uses one of 2 simple methods:

• Method 1: a substitution table, if the domain name consists of small letters, digits, or special
characters ‘-’, ‘_’, ‘.’

• Method 2: base64 with a custom alphabet, in case of capital letters present in the domain name

Method 1

In our example, the encoded domain name is “n2huov”. As it does not have any capital letters, the
malware encodes it with a substitution table “rq3gsalt6u1iyfzop572d49bnx8cvmkewhj”.

For each character in the domain name, the encoder replaces it with a character located in the
substitution table four characters right from the original character.

In order to decode the name back, all we have to do is to replace each encoded character with another
character, located in the substitution table four characters left from the original character.

To illustrate this method, imagine that the original substitution table is printed on a paper strip and
then covered with a card with 6 perforated windows. Above each window, there is a sticker note with a
number on it, to reflect the order of characters in the word “n2huov”, where ‘n’ is #1, ‘2’ is #2, ‘h’ is
#3 and so on:

Once the paper strip is pulled by 4 characters right, the perforated windows will reveal a different word
underneath the card: “domain”, where ‘d’ is #1, ‘o’ is #2, ‘m’ is #3, etc.:

1 https://docs.microsoft.com/en-us/dotnet/api/system.net.networkinformation.ipglobalproperties.
domainname?redirectedfrom=MSDN&view=net-5.0#System_Net_NetworkInformation_
IPGlobalProperties_DomainName

Prevasio Pty Ltd | https://prevasio.io | Copyright © 2020 All Rights Reserved

Prevasio Pty Ltd | https://prevasio.io | Copyright © 2020 All Rights Reserved

A special case is reserved for such characters as ‘0’, ‘-’, ‘_’, ‘.’. These characters are encoded with
‘0’, followed with a character from the substitution table. An index of that character in the substitution
table, divided by 4, provides an index within the string “0_-.”.

The following snippet in C# illustrates how an encoded string can be decoded:

Method 2

This method is a standard1 base64 encoder with a custom alphabet
“ph2eifo3n5utg1j8d94qrvbmk0sal76c”.

Here is a snippet in C# that provides a decoder:

1 https://stackoverflow.com/questions/641361/base32-decoding

static string decode_domain(string s)
{
 string table = “rq3gsalt6u1iyfzop572d49bnx8cvmkewhj”;
 string result = “”;
 for (int i = 0; i < s.Length; i++)
 {
 if (s[i] != ‘0’)
 {
 result += table[(table.IndexOf(s[i]) + table.Length - 4) % table.Length];
 }
 else
 {
 if (i < s.Length - 1)
 {
 if (table.Contains(s[i + 1]))
 {
 result += “0_-.”[table.IndexOf(s[i + 1]) % 4];
 }
 else
 {
 break;
 }
 }
 i++;
 }
 }

public static string FromBase32String(string str)
{
 string table = "ph2eifo3n5utg1j8d94qrvbmk0sal76c";
 int numBytes = str.Length * 5 / 8;
 byte[] bytes = new Byte[numBytes];

Prevasio Pty Ltd | https://prevasio.io | Copyright © 2020 All Rights Reserved

 int bit_buffer;
 int currentCharIndex;
 int bits_in_buffer;
 if (str.Length < 3)
 {
 bytes[0] = (byte)(table.IndexOf(str[0]) | table.IndexOf(str[1]) << 5);
 return System.Text.Encoding.UTF8.GetString(bytes);
 }

 bit_buffer = (table.IndexOf(str[0]) | table.IndexOf(str[1]) << 5);
 bits_in_buffer = 10;
 currentCharIndex = 2;
 for (int i = 0; i < bytes.Length; i++)
 {
 bytes[i] = (byte)bit_buffer;
 bit_buffer >>= 8;
 bits_in_buffer -= 8;
 while (bits_in_buffer < 8 && currentCharIndex < str.Length)
 {
 bit_buffer |= table.IndexOf(str[currentCharIndex++]) << bits_in_buffer;
 bits_in_buffer += 5;
 }
 }
 return System.Text.Encoding.UTF8.GetString(bytes);
}

When the malware encodes a domain using Method 2, it prepends the encrypted string with a double
zero character: "00".

Following that, extracting a domain part of an encoded domain name (long form) is as simple as:

static string get_domain_part(string s)
{
 int i = s.IndexOf(".appsync-api");
 if (i > 0)
 {
 s = s.Substring(0, i);
 if (s.Length > 16)
 {
 return s.Substring(16);
 }
 }
 return "";
}

Prevasio Pty Ltd | https://prevasio.io | Copyright © 2020 All Rights Reserved

Once the domain part is extracted, the decoded domain name can be obtained by using Method 1 or
Method 2, as explained above:

Decrypting the Victims’ Domain Names

To see the decoder in action, let’s select 2 lists:

List #1

Bambenek Consulting has provided1 a list of observed hostnames for the DGA domain.

List #2

The second list has surfaced in a Paste bin paste2, allegedly3 sourced from Zetalytics / Zonecruncher4.

NOTE: This list is fairly ‘noisy’, as it has non-decodable domain names.

By feeding both lists to our decoder, we can now obtain a list of decoded domains, that could have
been generated by the victims of the Sunburst backdoor.

DISCLAIMER

It is not clear if the provided lists contain valid domain names that indeed belong to the victims. It is
quite possible that the encoded domain names were produced by third-party tools, sandboxes, or by
researchers that investigated and analysed the backdoor.

The decoded domain names are provided purely as a reverse engineering exercise. The resulting list was
manually processed to eliminate noise, and to exclude duplicate entries. Following that, we have made
an attempt to map the obtained domain names to the company names, using Google search. Reader’s
discretion is advised as such mappings could be inaccurate.

1 https://github.com/bambenek/research/blob/main/sunburst/uniq-hostnames.txt
2 https://pastebin.com/6EDgCKxd
3 https://twitter.com/0xrb/status/1339199268146442241
4 https://zetalytics.com/

if (domain.StartsWith(“00”))
{
 decoded = FromBase32String(domain.Substring(2));
}
else
{
 decoded = decode_domain(domain);
}

Prevasio Pty Ltd | https://prevasio.io | Copyright © 2020 All Rights Reserved

Decoded Domain Mapping (Could Be Inaccurate)
hgvc.com Hilton Grand Vacations
Amerisaf AMERISAFE, Inc.
kcpl.com Kansas City Power and Light Company
SFBALLET San Francisco Ballet
scif.com State Compensation Insurance Fund
LOGOSTEC Logostec Ventilação Industrial
ARYZTA.C ARYZTA Food Solutions
bmrn.com BioMarin Pharmaceutical Inc.
AHCCCS.S Arizona Health Care Cost Containment System
nnge.org Next Generation Global Education
cree.com Cree, Inc (semiconductor products)
calsb.org The State Bar of California
rbe.sk.ca Regina Public Schools
cisco.com Cisco Systems
pcsco.com Professional Computer Systems
barrie.ca City of Barrie
ripta.com Rhode Island Public Transit Authority
uncity.dk UN City (Building in Denmark)
bisco.int Boambee Industrial Supplies (Bisco)
haifa.edu University of Haifa
smsnet.pl SMSNET, Poland
fcmat.org Fiscal Crisis and Management Assistance Team
wiley.com Wiley (publishing)
ciena.com Ciena (networking systems)
belkin.com Belkin
spsd.sk.ca Saskatoon Public Schools
pqcorp.com PQ Corporation
ftfcu.corp First Tech Federal Credit Union
bop.com.pk The Bank of Punjab
nvidia.com NVidia
insead.org INSEAD (non-profit, private university)
usd373.org Newton Public Schools
agloan.ads American AgCredit
pageaz.gov City of Page
jarvis.lab Erich Jarvis Lab
ch2news.tv Channel 2 (Israeli TV channel)
bgeltd.com Bradford / Hammacher Remote Support Software
dsh.ca.gov California Department of State Hospitals
dotcomm.org Douglas Omaha Technology Commission
sc.pima.gov Arizona Superior Court in Pima County

Prevasio Pty Ltd | https://prevasio.io | Copyright © 2020 All Rights Reserved

Decoded Domain Mapping (Could Be Inaccurate)
itps.uk.net IT Professional Services, UK
moncton.loc City of Moncton
acmedctr.ad Alameda Health System
csci-va.com Computer Systems Center Incorporated
keyano.local Keyano College
uis.kent.edu Kent State University
alm.brand.dk Sydbank Group (Banking, Denmark)
ironform.com Ironform (metal fabrication)
corp.ncr.com NCR Corporation
ap.serco.com Serco Asia Pacific
int.sap.corp SAP
mmhs-fla.org Cleveland Clinic Martin Health
nswhealth.net NSW Health
mixonhill.com Mixon Hill (intelligent transportation systems)
bcofsa.com.ar Banco de Formosa
ci.dublin.ca. Dublin, City in California
siskiyous.edu College of the Siskiyous
weioffice.com Walton Family Foundation
ecobank.group Ecobank Group (Africa)
corp.sana.com Sana Biotechnology
med.ds.osd.mi US Gov Information System
wz.hasbro.com Hasbro (Toy company)
its.iastate.ed Iowa State University
amr.corp.intel Intel
cds.capilanou. Capilano University
e-idsolutions. IDSolutions (video conferencing)
helixwater.org Helix Water District
detmir-group.r Detsky Mir (Russian children’s retailer)
int.lukoil-int LUKOIL (Oil and gas company, Russia)
ad.azarthritis Arizona Arthritis and Rheumatology Associates
net.vestfor.dk Vestforbrænding
allegronet.co. Allegronet (Cloud based services, Israel)
us.deloitte.co Deloitte
central.pima.g Pima County Government
city.kingston. City of Kingston
staff.technion Technion - Israel Institute of Technology
airquality.org Sacramento Metropolitan Air Quality Management District
phabahamas.org Public Hospitals Authority, Caribbean
parametrix.com Parametrix (Engineering)
ad.checkpoint. Check Point

Prevasio Pty Ltd | https://prevasio.io | Copyright © 2020 All Rights Reserved

Decoded Domain Mapping (Could Be Inaccurate)
corp.riotinto. Rio Tinto (Mining company, Australia)
intra.rakuten. Rakuten
us.rwbaird.com Robert W. Baird & Co. (Financial services)
ville.terrebonn Ville de Terrebonne
woodruff-sawyer Woodruff-Sawyer & Co., Inc.
fisherbartoninc Fisher Barton Group
banccentral.com BancCentral Financial Services Corp.
taylorfarms.com Taylor Fresh Foods
neophotonics.co NeoPhotonics (optoelectronic devices)
gloucesterva.ne Gloucester County
magnoliaisd.loc Magnolia Independent School District
zippertubing.co Zippertubing (Manufacturing)
milledgeville.l Milledgeville (City in Georgia)
digitalreachinc Digital Reach, Inc.
deniz.denizbank DenizBank
thoughtspot.int ThoughtSpot (Business intelligence)
lufkintexas.net Lufkin (City in Texas)
digitalsense.co Digital Sense (Cloud Services)
wrbaustralia.ad W. R. Berkley Insurance Australia
christieclinic. Christie Clinic Telehealth
signaturebank.l Signature Bank
dufferincounty. Dufferin County
mountsinai.hosp Mount Sinai Hospital
securview.local Securview Victory (Video Interface technology)
weber-kunststof Weber Kunststoftechniek
parentpay.local ParentPay (Cashless Payments)
europapier.inte Europapier International AG
molsoncoors.com Molson Coors Beverage Company
fujitsugeneral. Fujitsu General
cityofsacramento City of Sacramento
ninewellshospita Ninewells Hospital
fortsmithlibrary Fort Smith Public Library
dokkenengineerin Dokken Engineering
vantagedatacente Vantage Data Centers
friendshipstateb Friendship State Bank
clinicasierravis Clinica Sierra Vista
ftsillapachecasi Apache Casino Hotel
voceracommunicat Vocera (clinical communications)
mutualofomahaban Mutual of Omaha Bank

Prevasio Pty Ltd | https://prevasio.io | Copyright © 2020 All Rights Reserved

Passive DNS requests

Previously, we have described the most important parts of the Sunburst backdoor functionality and its
Domain Generation Algorithm (DGA).

This time, let’s have a deeper look into the passive DNS requests reported by Open-Source Context1 and
Zetalytics2.

The valid DNS requests generated by the malware fall into 2 groups:

• DNS requests that encode a local domain name
• DNS requests that encode data

• The first type of DNS requests allows splitting long domain names into separate requests. These
requests are generated by the malware’s functions GetPreviousString() and GetCurrentString().

In general, the format of a DNS request that encodes a domain name may look like:

 USER_ID.NUM.COMPUTER_DOMAIN[.]appsync-api.us-west-2[.]avsvmcloud[.]com

where:

• USER_ID is an 8-byte user ID that uniquely identifies a compromised host, encoded as a 15-character
string

• NUM is a number of a domain name - either 0 or 1, encoded as a character
• COMPUTER_DOMAIN is an encoded local computer domain

Let’s try decoding the following 3 DNS requests:

• olc62cocacn7u2q22v02eu.appsync-api.us-west-2.avsvmcloud.com
• r1qshoj05ji05ac6eoip02jovt6i2v0c.appsync-api.us-west-2.avsvmcloud.com
• lt5ai41qh5d53qoti3mkmc0.appsync-api.us-west-2.avsvmcloud.com

String #1

Let’s start from the 1st string in the list:

 olc62cocacn7u2q22v02eu.appsync-api.us-west-2.avsvmcloud.com.

In this string, the first 15-character string is an encoded USER_ID: “olc62cocacn7u2q”.

Once it is base-64 decoded, as explained previously, it becomes a 9-byte byte array:

 86 7f 2f be f9 fb a3 ae c4

1 https://oscontext.com/
2 https://zetalytics.com/

Prevasio Pty Ltd | https://prevasio.io | Copyright © 2020 All Rights Reserved

The first byte in this byte array is a XOR key: 0x86. Once applied to the 8 bytes that follow it, we get the
8-byte user ID - let’s take a note and write it down, we will need it later:

 f9 a9 38 7f 7d 25 28 42

Next, let’s take the NUM part of the encoded domain: it’s a character “2” located at the position #15
(starting from 0) of the encrypted domain.

In order to decode the NUM number, we have to take the first character of the encrypted
domain, take the reminder of its division by 36, and subtract the NUM’s position in the string
“0123456789abcdefghijklmnopqrstuvwxyz”:

 num = domain[0] % 36 - “0123456789abcdefghijklmnopqrstuvwxyz”.IndexOf(domain.Substring(15, 1));

The result is 1. That means the decrypted domain will be the 2nd part of a full domain name. The first
part must have its NUM decoded as 0.

The COMPUTER_DOMAIN part of the encrypted domain is “2v02eu”. Once decoded, using the previously
explained method, the decoded computer domain name becomes “on.ca”.

String #2

Let’s decode the second passive DNS request from our list:

 r1qshoj05ji05ac6eoip02jovt6i2v0c.appsync-api.us-west-2.avsvmcloud.com

Just as before, the decoded 8-byte user ID becomes:

 f9 a9 38 7f 7d 25 28 42

The NUM part of the encoded domain, located at the position #15 (starting from 0), is a character “6”.

Let’s decode it, by taking the first character (“r” = 114), take the reminder of its
division by 36 (114 % 36 = 6), and subtracting the position of the character “6” in the
“0123456789abcdefghijklmnopqrstuvwxyz”, which is 6. The result is 0. That means the decrypted
domain will be the 1st part of the full domain name.

The COMPUTER_DOMAIN part of the encrypted domain is “eoip02jovt6i2v0c”. Once decoded, it
becomes “city.kingston.”

Next, we need to match 2 decrypted domains by the user ID, which is f9 a9 38 7f 7d 25 28 42 in
both cases, and concatenate the first and the second parts of the domain.

The result will be “city.kingston.on.ca”.

Prevasio Pty Ltd | https://prevasio.io | Copyright © 2020 All Rights Reserved

String #3

Here comes the most interesting part. Lets try to decrypt the string #3 from our list of passive DNS requests:

 lt5ai41qh5d53qoti3mkmc0.appsync-api.us-west-2.avsvmcloud.com

The decoded user ID is not relevant, as the decoded NUM part is a number -29.

It’s neither 0 nor 1, so what kind of domain name that is? If we ignore the NUM part and decode the domain
name, using the old method, we will get “thx8xb”, which does not look like a valid domain name.

Cases like that are not the noise, and are not some artificially encrypted artifacts that showed up among the DNS
requests.

This is a different type of DNS requests. Instead of encoding local domain names, these types of requests contain
data. They are generated by the malware’s function GetNextStringEx().

The encryption method is different as well. Let’s decrypt this request.

First, we can decode the encrypted domain, using the same base-64 method, as before.

The string will be decoded into 14 bytes:

 7c a5 4d 64 9b 21 c1 74 a6 59 e4 5c 7c 7f

Let’s decode these bytes, starting from the 2nd byte, and using the first byte as a XOR key. We will get:

 7c d9 31 18 e7 5d bd 08 da 25 98 20 00 03

In this array, the bytes marked in yellow are an 8-byte User ID, encoded with a XOR key that is selected from 2
bytes marked in red.

Let’s decode User ID:

 for (int i = 0; i < 8; i++)
 {
 bytes[i + 1] ^= bytes[11 - i % 2];
 }

The decoded byte array becomes:

 7c f9 a9 38 7f 7d 25 28 42 25 98 20 00 03

The User ID part in marked in yellow. Does it look familiar? Indeed, it’s the same User ID we’ve seen before, when
we decoded “city.kingston.on.ca”.

The next 3 bytes marked in red are: 25 98 20.

Prevasio Pty Ltd | https://prevasio.io | Copyright © 2020 All Rights Reserved

• 2
• 0x59820

The first number 2 stands for the size of data that follows - this data is 00 03 (selected in green).

The number 0x59820, or 366,624 in decimal, is a timestamp. It’s a number of 4-second periods of time since 1
January 2010.

To obtain the real time stamp, we need to multiple it by 15 to get minutes, then add those minutes to 1 January
2010:

var date = (new DateTime(2010, 1, 1, 0, 0, 0, DateTimeKind.Utc)).AddMinutes(timestamp * 15);

For the number 0x59820, the time stamp becomes 16 July 2020 12:00:00 AM - that’s the day when the DNS
request was made.

The remaining 2 bytes, 00 03, encrypt the state of 8 security products, to indicate whether each one of them is
running or whether it is stopped.

The 8 security products are:

• Windows Live OneCare / Windows Defender
• Windows Defender Advanced Threat Protection
• Microsoft Defender for Identity
• Carbon Black
• CrowdStrike
• FireEye
• ESET
• F-Secure

2 states for 8 products require 2 * 8 = 16 bits = 2 bytes.

The 2 bytes 00 03 in binary form are:

 00 00 00 00 00 00 00 11

Here, the least-significant bits 11 identify that the first product in the list, Windows Live OneCare / Windows
Defender, is reported as ‘running’ (1) and as ‘stopped’ (1).

Now we know that apart from the local domain, the trojanised SolarWinds software running on the same
compromised host on “city.kingston.on.ca” domain has also reported the status of the Windows Defender
software.

Prevasio Pty Ltd | https://prevasio.io | Copyright © 2020 All Rights Reserved

What Does it Mean?

As explained in the first part of our description, the malware is capable of stopping the services of security
products, be manipulating registry service keys under Administrator account.

It’s likely that the attackers are using DNS queries as a C2 channel to first understand what security products are
present. Next, the same channel is used to instruct the malware to stop/deactivate these services, before the 2nd
stage payload, TearDrop Backdoor, is deployed.

Armed with this knowledge, let’s decode other passive DNS requests, printing the cases when the compromised
host reports a running security software.

NOTES:

• As a private case, if the data size field is 0 or 1, the timestamp field is not followed with any data. Such type of
DNS request is generated by the malware’s function GetNextString(). It is called ‘a ping’ in the listing below.

• If the first part of the domain name is missing, the recovered domain name is pre-pended with ‘*’.
• The malware takes the time difference in minutes, then divides it by 30 and then converts the result from

double type to int type; as a result of such conversion, the time stamps are truncated to the earliest half hour.

 2D82B037C060515C SFBALLET

 Data:
 Windows Live OneCare / Windows Defender [running] 11/07/2020 12:00:00 AM

 Pings:
 12/07/2020 12:30:00 AM

 70DEE5C062CFEE53 ccscurriculum.c

 Data:
 ESET [running] 17/04/2020 4:00:00 PM

 Pings:
 20/04/2020 5:00:00 PM

 AB902A323B541775 mountsinai.hospital

 Pings:
 4/07/2020 12:30:00 AM

 9ACC3A3067DC7FD5 *ripta.com

 Data:
 ESET [running] 12/09/2020 6:30:00 AM

 Pings:
 13/09/2020 7:30:00 AM
 14/09/2020 9:00:00 AM

Prevasio Pty Ltd | https://prevasio.io | Copyright © 2020 All Rights Reserved

CB34C4EBCB12AF88 DPCITY.I7a

 Data:
 ESET [running] 26/06/2020 5:00:00 PM

 Pings:
 27/06/2020 6:30:00 PM
 28/06/2020 7:30:00 PM
 29/06/2020 8:30:00 PM
 29/06/2020 8:30:00 PM

E5FAFE265E86088E *scroot.com

 Data:
 CrowdStrike [running] 25/07/2020 2:00:00 PM

 Pings:
 26/07/2020 2:30:00 PM
 26/07/2020 2:30:00 PM
 27/07/2020 3:00:00 PM
 27/07/2020 3:00:00 PM

Full list of decoded pDNS requests can be found here1.
An example of a working implementation is available at this2 repo.

For a high-level illustration of the DNS Tunneling method used in the SolarWinds supply chain attack, please see
Addendum A.

1 https://pastebin.com/xLs5H10C
2 https://github.com/sysopfb/open_mal_analysis_notes/tree/master/sunburst_dga

Prevasio Pty Ltd | https://prevasio.io | Copyright © 2020 All Rights Reserved

Addendum A. DNS Tunneling In The SolarWinds Supply Chain Attack

1. An Attacker compromises SolarWinds company and trojanizes a DLL that belongs to its software.
2. Some of the customers receive the malicious DLL as an update for the SolarWinds Orion software.
3. “Corporation XYZ” receives the malicious and digitally signed DLL via update.
4. SolarWinds Orion software loads the malicious DLL as a plugin.
5. Once activated, the DLL reads a local domain name “local.corp-xyz.com” (a fictious name).
6. The malware encrypts the local domain name and adds it to a long domain name.
7. The long domain name is queried with a DNS server (can be tapped by a passive DNS sensor).
8. The recursive DNS server is not authorized to resolve avsvmcloud[.]com, so it forwards the request.
9. An attacker-controlled authoritative DNS server resolves the request with a wildcard A record.
10. The Attacker checks the victim’s name, then adds a CNAME record for the victim’s domain name.
11. The new CNAME record resolves the long domain name into an IP of an HTTP-based C2 server.
12. The malicious DLL downloads and executes the 2nd stage malware (TearDrop, Cobalt Strike Beacon).
13. A Threat Researcher accesses the passive DNS (pDNS) records.
14. One of the long domain names from the pDNS records is decrypted back into “local.corp-xyz.com”.
15. The Researcher deducts that the decrypted local domain name belongs to “Corporation XYZ”.

local.corp-xyz.com

Attacker

SolarWinds Company

18K Organizations

Corporation XYZ

Malicious
Update

Local Domain Name

SolarWinds Orion

x8rmf702k appsync-api.us-west-2.avsvmcloud.com

DNS Query

Recursive
DNS Server Passive

DNS
Sensor

Historic Records

C2 Server (HTTP)

Encrypted Domain Name

A
CNAME x8rmf702k appsync-api.us-west-2.avsvmcloud.com

* appsync-api.us-west-2.avsvmcloud.com

x8rmf702k
Passive DNS

Record

Decrypt

appsync...

local.corp-xyz.com
Local Domain Name

Deduct

“Corporation XYZ”

Encrypt1

2

3

6

7

8

9

10

11

12

13

144

5

Authoritative
DNS Server

Domain Name Recovery

2nd Stage Backdoor
(TearDrop, Cobalt

Strike Beacon)

